首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8701篇
  免费   1003篇
  国内免费   169篇
电工技术   419篇
综合类   466篇
化学工业   4469篇
金属工艺   284篇
机械仪表   135篇
建筑科学   526篇
矿业工程   170篇
能源动力   1138篇
轻工业   638篇
水利工程   6篇
石油天然气   175篇
武器工业   70篇
无线电   129篇
一般工业技术   734篇
冶金工业   332篇
原子能技术   17篇
自动化技术   165篇
  2024年   48篇
  2023年   120篇
  2022年   231篇
  2021年   366篇
  2020年   348篇
  2019年   289篇
  2018年   226篇
  2017年   332篇
  2016年   279篇
  2015年   294篇
  2014年   536篇
  2013年   532篇
  2012年   631篇
  2011年   699篇
  2010年   491篇
  2009年   492篇
  2008年   451篇
  2007年   598篇
  2006年   513篇
  2005年   424篇
  2004年   368篇
  2003年   307篇
  2002年   237篇
  2001年   218篇
  2000年   202篇
  1999年   155篇
  1998年   124篇
  1997年   88篇
  1996年   70篇
  1995年   37篇
  1994年   35篇
  1993年   37篇
  1992年   32篇
  1991年   9篇
  1990年   9篇
  1989年   14篇
  1988年   8篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1981年   3篇
  1951年   5篇
排序方式: 共有9873条查询结果,搜索用时 20 毫秒
991.
以阻燃聚酯切片与高色牢度色母粒为原料,制备了有色阻燃异径聚酯全拉伸丝(FDY),重点探讨了工艺条件对其热收缩性能的影响。结果表明:在试验范围内,有色阻燃异径聚酯FDY的热收缩率较有色普通异径聚酯FDY的高;拉伸温度对有色阻燃异径聚酯FDY热收缩率的影响很小,而定形温度与纺丝速度对其影响较大,且有色阻燃异径聚酯FDY的热收缩率随定形温度的升高而下降,随纺丝速度的降低而降低。  相似文献   
992.
王金泳  王兴旺 《中国塑料》2019,33(2):82-85,130
通过不同分析方法研究了二乙基次磷酸铝(AlPi)受热后的变化过程。结果证实,随温度升高AlPi会通过自身挥发将阻燃性含磷物质释放到气相中;此外还存在一种热降解机理,分解后含磷物质留在固相中,降低了气相阻燃能力;进一步分析发现,在与火焰温度接近条件下,挥发到气相中的二乙基次磷酸铝会充分裂解成磷原子,进而形成含磷自由基淬灭剂起气相阻燃作用。  相似文献   
993.
采用勃姆石(BM)作为阻燃和增强材料,利用熔融共混法制备了BM阻燃和增强改性的聚对苯二甲酸乙二醇酯(PET)/BM复合材料。分别测试了BM用量对于PET复合材料的力学性能、结晶性能、热性能、阻燃性能的影响。结果表明,随着BM用量的增加,PET/BM复合材料的刚性逐渐增加,韧性逐渐降低;PET/BM复合材料的热结晶温度(Tc)和冷结晶温度(Tcc)分别随着BM用量的增加逐渐升高和降低,且ΔT(Tc-Tcc)逐渐增加,BM具有异相成核作用,提高了复合材料的结晶速率和相对结晶度(Xc);而复合材料的熔融温度则随着BM用量的增加而逐渐降低;BM对PET具有良好的阻燃作用,BM能够使PET/BM复合材料的残炭量增加,使复合材料的分解温度降低,增加了材料燃烧时的热稳定性。  相似文献   
994.
This research presents the test results carried out in a diesel engine converted to spark ignition (SI) using gaseous fuels, applying a geometry change of the pistons combustion chamber (GCPCC) to increase the turbulence intensity during the combustion process; with similar compression ratio (CR) of the original diesel engine; the increase in turbulence intensity was planned to rise turbulent flame speed of biogas, to compensate its low laminar flame speed. The research present the test to evaluate the effect of increase turbulence intensity on knocking tendency; using fuel blends of biogas with natural gas, propane and hydrogen; for each fuel blend the maximum output power was measured just into the knocking threshold before and after GCPCC; spark timing (ST) was adjusted for optimum generating efficiency at the knocking threshold. Turbulence intensity with GCPCC was estimated using Fluent 13, with 3D Combustion Fluid Dynamics (CFD) numerical simulations; 12 combustion chamber geometries were simulated in motoring conditions; the selected geometry had the greatest simulated turbulent kinetic energy (TKE) and Reynolds number (Re) during combustion. The increased turbulence intensity was measured indirectly through the periods of combustion duration to mass fraction burn 0–5%, 0–50% and 0–90%; for almost all the fuel blends the increased turbulence intensity of the engine, increased the knocking tendency requiring to reduce the maximum output power to keep engine operation just into the knocking threshold. Biogas was the only fuel without power derating by the conditions of higher pressure and higher turbulence during combustion by GCPCC and improve its generating efficiency. Peak pressure, heat release rate, mean effective pressure and exhaust temperature were lower after GCPCC. Tests results indicated that knocking tendency was increased because of the higher turbulent flame speed; fuel blends with high laminar flame speed and low methane number (MN) had higher knocking tendency and lower output power.  相似文献   
995.
The temporal evolution of the kinematic properties of hydrogen enriched, lean premixed methane-air flames was studied experimentally in a rapid compression expansion machine (RCEM) during transient operation. Schlieren imaging was used to capture the flame front propagation, while the temporally evolving flow field was simultaneously acquired by particle image velocimetry (PIV). A statistical analysis based on probability density functions (PDFs) of non-dimensional formulations of the flame curvature, stretch rate and displacement speed was performed to study the effect of the onset of flame instabilities on the aerodynamic characteristics of the propagating flame kernel. It was found that initial perturbations stemming from the presence of the spark plug electrodes and from the gas expansion led to the formation of large scale cusps related to the hydrodynamic instability, which is manifested by a notable negative skewness of the curvature PDF, validating recent numerical findings. Under the influence of thermal-diffusive effects, small scale cellular structures develop along the flame front beyond a certain radius, with their appearance shifting to earlier times with increasing hydrogen content or for leaner mixtures. The increasing width of the normalized curvature and stretch rate PDFs is proposed as an indicator for the onset of this type of instability. The adopted methodology allows to track the self-acceleration of the propagating flame front effecting from hydrogen enrichment of methane. The findings of this study provide valuable physical insight and aid in the development of more accurate models, capable of capturing these complex phenomena.  相似文献   
996.
Low NOx burner and air staged combustion are widely applied to control NOx emission in coal-fired power plants. The gas-solid two-phase flow, pulverized coal combustion and NOx emission characteristics of a single low NOx swirl burner in an existing coal-fired boiler was numerically simulated to analyze the mechanisms of flame stability and in-flame NOx reduction. And the detailed NOx formation and reduction model under fuel rich conditions was employed to optimize NOx emissions for the low NOx burner with air staged combustion of different burner stoichiometric ratios. The results show that the specially-designed swirl burner structures including the pulverized coal concentrator, flame stabilizing ring and baffle plate create an ignition region of high gas temperature, proper oxygen concentration and high pulverized coal concentration near the annular recirculation zone at the burner outlet for flame stability. At the same time, the annular recirculation zone is generated between the primary and secondary air jets to promote the rapid ignition and combustion of pulverized coal particles to consume oxygen, and then a reducing region is formed as fuel-rich environment to contribute to in-flame NOX reduction. Moreover, the NOx concentration at the outlet of the combustion chamber is greatly reduced when the deep air staged combustion with the burner stoichiometric ratio of 0.75 is adopted, and the CO concentration at the outlet of the combustion chamber can be maintained simultaneously at a low level through the over-fired air injection of high velocity to enhance the mixing of the fresh air with the flue gas, which can provide the optimal solution for lower NOx emission in the existing coal-fired boilers.  相似文献   
997.
In a number of previous numerical studies, the fuel inlet velocity boundary conditions (BC) of coflow diffusion flames were specified at the exit of the fuel nozzle with a parabolic velocity profile. Such choices were based on the assumption that the flow inside the vertical fuel tube is fully developed and the buoyancy has negligible impact on the fuel flow at the nozzle exit. These assumptions, however, might not hold in practical experiments. This study demonstrates it is necessary to account for the effect of inlet BC location to accurately predict the nozzle exit velocity profile as well as the velocity, temperature profiles downstream, which are prerequisites for meaningful polycyclic aromatic hydrocarbon (PAH) and soot prediction in coflow diffusion flames. In particular, laboratory-scale laminar coflow diffusion flames at atmospheric pressure have been studied computationally with a focus on the effects of the fuel inlet velocity profile on PAH formation. Two sets of simulations were conducted which differ in the location specified for the fuel inlet boundary. In the first case, the fuel inlet boundary was specified at the nozzle exit while in the second case it was specified at a distance of 7 cm upstream of the nozzle exit. Parabolic velocity profiles were specified for both cases. In each set of simulations, flames with three different fuels (methane, ethylene and propane) were tested. Detailed high-temperature reaction mechanisms accounting for the formation of aromatic species were employed. The results showed that the fuel inlet BC location notably influence the predicted flow/temperature field and the resultant PAH concentration. Moreover, the effects become more notable with lower fuel stream velocities. It was also found that for propane with a density larger than air, recirculation zones were formed near the nozzle exit which exerted an additional influence on the flow development and temperature field as well as PAH formation. In addition, the effects of nozzle heating on flow development and PAH formation were also investigated.  相似文献   
998.
通过共沉淀法制备了亚微米尺寸的羟基锡酸钴(CHS)阻燃剂,并将其应用于软质聚氯乙烯(PVC)中,制得CHS/PVC复合材料。采用极限氧指数仪(LOI)、锥形量热仪、TG和拉伸仪研究了CHS/PVC复合材料的阻燃性能、热稳定性和力学性能。结果表明,CHS可以有效提高CHS/PVC复合材料的阻燃性能,并对CHS/PVC复合材料的力学性能保护较好;与空白PVC相比,当CHS添加量(CHS与PVC质量比)为10%时,CHS/PVC复合材料的LOI增加了2.3%,热释放速率峰值和烟释放速率峰值分别下降了39.6%和57.4%。这主要是由于CHS受热后脱除的水具有冷却和稀释热量的作用;另一方面在燃烧过程中生成的CoCl2可以有效催化PVC早期分解,形成更加致密且连续的残炭,从而有效抑制PVC的燃烧。   相似文献   
999.
目前国内外关于阻火器阻火性能的测试研究主要集中在某一特定条件下的火焰传播规律方面,缺乏较为系统的阻火性能测试研究及装置研制。依据国内外阻火器测试研究成果,自行设计加工了一套石油气体管道阻火器阻火性能测试系统,制定了测试方案。采用该测试系统对阻爆燃和阻爆轰阻火器分别进行了13组实验测试和分析。在阻爆燃测试中,引爆段火焰传感器监测到爆燃火焰,火焰平均传播速度处于爆燃阶段。而保护段未监测到火焰信号,火焰未通过阻爆燃阻火器。在阻爆轰测试中,引爆段火焰传感器监测到爆轰火焰,火焰平均传播速度达到爆轰阶段,火焰无法通过阻爆轰阻火器进入保护段,阻火器能够有效使用。实验测试分析证明该测试系统可以有效可靠地检测石油气体管道阻火器的阻火性能。  相似文献   
1000.
Intrinsically flame‐retardant polymers based on lightweight and elastomeric microcellular foams are successfully prepared from flexible chlorinated polyethylene (CPE)/chlorinated polyvinylchloride (CPVC) compounds through compression molding foaming technology. The incorporation of CPVC to CPE at once improves the foam characteristics, and enhances the mechanical and fire performances. Due to the plausible intermolecular and intramolecular crosslinking among the polymer chains, the dense network structure of CPE/CPVC with enhanced strength results in increased cell size, reduced cell density, and improved dimensional stability of CPE/CPVC foams (CCFs). These improvements are noticed to be enhanced with increasing CPVC content in the CCF. Also, the flame‐retardant properties of the foams (i.e., limiting oxygen index and cone calorimeter combustion) are found to be increased with the increase of CPVC content. For instance, a highly flame‐retardant CCF at CPE/CPVC ratio of 60/40 shows a shorter combustion period, as derived from the respective heat release rate vs time curve. Corresponding peaks of heat release rate, total heat release rate, peak of mass loss rate, total smoke release, and char residue are recorded to be 8.4%, 5.8%, 3.0%, 6.6%, and 1000.1% of those recorded for the pristine CPE foam.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号