首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1949篇
  免费   651篇
  国内免费   81篇
电工技术   15篇
综合类   47篇
化学工业   798篇
金属工艺   101篇
机械仪表   16篇
建筑科学   2篇
矿业工程   3篇
能源动力   64篇
轻工业   2篇
石油天然气   4篇
无线电   482篇
一般工业技术   1102篇
冶金工业   16篇
原子能技术   4篇
自动化技术   25篇
  2024年   7篇
  2023年   81篇
  2022年   43篇
  2021年   152篇
  2020年   129篇
  2019年   120篇
  2018年   150篇
  2017年   144篇
  2016年   191篇
  2015年   192篇
  2014年   237篇
  2013年   205篇
  2012年   155篇
  2011年   188篇
  2010年   148篇
  2009年   159篇
  2008年   125篇
  2007年   96篇
  2006年   60篇
  2005年   49篇
  2004年   19篇
  2003年   11篇
  2002年   13篇
  2000年   3篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1951年   1篇
排序方式: 共有2681条查询结果,搜索用时 15 毫秒
81.
82.
83.
Silver nanowire (AgNW) networks are a promising candidate to replace indium tin oxide (ITO) as transparent conductors. In this paper, a novel transparent composite conductor composed of AgNW/biocompatible alginate gel on a flexible polyethylene terephthalate (PET) substrate, with synchronously enhanced adhesion and reduced resistivity, is prepared without high‐temperature annealing. The sheet resistance of the flexible AgNW/PET film reduces from 300 to 50.3 Ohm sq?1 at transmittance of 94%. The optical and electrical performance is superior to that obtained from the flexible ITO film on PET. Meanwhile, the sheet resistance does not show great change after tape test, suggesting a good adhesion of AgNW to the polymer substrate. Moreover, the AgNW composite film shows a good stability to resist long‐term storage, solvent damage, and ultrasonication. Finally, polymer solar cells employing the composite AgNW film as the electrode are realized, displaying an efficiency of 2.44%.  相似文献   
84.
WO3是一种带隙约为2.6eV过渡金属半导体,可见光便能激发其光催化活性,这极大地提高了太阳光的利用率,但纯WO3纳米材料催化活性较低,针对这一难题,国内外研究者大多采取对其表面改性来提高它的光催化性能,对WO3本身进行原位研究的报道极少。实验致力于改进WO3纳米材料的形貌结构来拓展其光催化性能。分别采取CaCl2和Na2SO4为诱导盐,Na2WO4为W源,在一定的pH值条件下水热制备WO3纳米网格和纳米线;并研究了这两种不同形貌结构的WO3纳米材料的光催化活性。研究表明,WO3网格立体网格结构具有更好的催化性能。实验发现WO3网格独特的层状结构能减少太阳光的逃逸,增强对光的吸收;网格结构具有更大的比表面积,能增加光催化过程中催化剂与有机物的反应活性点;这两点可能是立体网格结构WO3促进光催化反应的重要原因。  相似文献   
85.
One dimensional silver nanowires (AgNWs) were grown on carbon fiber (CF) by a facile polyol method. Fourier transform infrared spectrometer (FTIR), laser Raman spectrometer (Raman), field‐emission scanning electron microscopy (FESEM), X ray diffraction instrument (XRD), energy dispersive spectrometer (EDS), and X‐ray photoelectron spectrometer (XPS) were carried out to reveal the structure, morphology, and formation mechanism of the CF‐AgNWs. It was found that AgNO3 concentration of 1.5 mM, reaction temperature of 160°C, and reaction time of 120 min were appropriate conditions for growth of AgNWs on CF. Moreover, a mechanism was suggested that the cysteamine on CF acted as nucleation centers for growth of silver nanoparticles and then small sized silver nanoparticles reduced from silver nitrate were grown on CF via the silver bonding to sulfur. Through an Ostwald ripening process, small sized silver nanoparticles were grown into larger particles. With the assistance of polyvinylpyrolidone (PVP), these larger particles were directed to grow in a definite direction to form nanowires. It was found that the resistance of CF‐AgNWs was decreased to 19.5 Ω, compared with that of CF (102.6 Ω) with the same quality. Thus, the CF‐AgNWs was added into waterborne polyurethane (WPU) to improve the electrical and dielectric properties of WPU. Results showed the WPU/CF‐AgNWs composite presented a lower percolation threshold than WPU/CF composite. When the content was 2.5 wt %, the volume resistivity of the WPU/CF‐AgNWs (1.90 × 104 Ω cm?1) was lower by approximately three orders of magnitude than that of WPU/CF (4.19 × 107 Ω cm?1). When the content was 2.5 wt %, the dielectric constant and dielectric loss of the WPU/CF‐AgNWs were improved to 15.24 and 0.21, which were 34.5 and 40.8% higher than that of WPU/CF. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43056.  相似文献   
86.
This work presents useful composites for oil spill cleanup processes. These systems are composed of a polyester matrix loaded with coffee ground powder and maghemite. They were prepared by in situ polymerization. The aliphatic monomers proportion—castor oil and glycerin—was studied with the aim of understanding the effect of feed ratio on the product properties. The materials were studied using several techniques, including Fourier Transform Infrared Spectroscopy, Ultraviolet‐visible Spectrophotometry, and Wide Angle X‐ray Scattering, with magnetic force tests used for the characterization of materials. Density tests showed the presence of coffee grounds causes an important reduction in the density values of composites, improving their flotation. The interaction between composites and petroleum is more than twice that between composites and water. Moreover, for all magnetizable composites, the removal capability was (25.1 ± 1.2) g/g (petroleum/composite), allowing us to state that this is a promising material for use in oil spill cleanup processes. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43127.  相似文献   
87.
In this work, syntheses of thermoresponsive poly(N‐isopropylacrylamide) (PNIPAM) with different molecular weights were carried out in ethanol by distillation precipitation polymerization (DPP) technique. The synthesized polymers were fully characterized by attenuated total reflection Fourier‐transform infrared (ATR‐FTIR) spectroscopy, nuclear magnetic resonance spectroscopy, and size exclusion chromatography techniques. The lower critical solution temperatures of the polymers were determined with differential scanning calorimetry. A simple and versatile method for the in situ synthesis and grafting of PNIPAM on mesoporus silica nanoparticles (MSNs) with improved control over quantitative grafting is devised. The PNIPAM grafted MSNs were characterized with ATR‐FTIR, thermogravimetric analysis, transmission electron microscopy, and dynamic light scattering analyses. From the results obtained it is showed that quantitative grafting of PNIPAM on MSNs from 1 to 20% by weight can be tuned by manipulating the in situ DPP reaction conditions. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44181.  相似文献   
88.
Ultrasmall superparamagnetic iron oxide (Fe3O4) nanoparticles coated by biocompatible pullulan (Pu‐USPIO) with sizes below 10 nm and having a magnetite core and a hydrophilic outer shell of pullulan were prepared. The formed Pu‐USPIOs were thoroughly characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, atomic force microscopy, and small‐angle X‐ray scattering experiments. The content of magnetic nanoparticles embedded into the pullulan matrix was determined by thermogravimetric analysis. Vibrating sample magnetometry analysis was used to evaluate the magnetic properties of the Pu‐USPIO samples. Because of the presence of pullulan, these nanoparticles could be conditioned in many versatile forms, from a clear solution to magnetic films, for potential applications, including magnetic hyperthermia mediators. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42926.  相似文献   
89.
The preparation of a facilitated transport membrane of polyurethane (PU) containing silver nanoparticles is reported. The propylene and propane sorption was investigated aiming at the selective separation from C3s mixtures. The silver particles were photogenerated in situ into the polyurethane matrix using UV light radiation and silver triflate (AgCF3SO3) as precursor. The morphological properties of these membranes (PUAg) reveled great dispersion of silver particles, which size was smaller than 110 nm. The propylene solubility in PUAg resulted more than four times superior to the one for the pure PU membrane, revealing the high affinity between silver and propylene. Flory–Huggins theory was more accurate to describe the propylene sorption behavior in PUAg than Henry's model. The ideal solubility selectivity of PUAg membrane resulted 24.4, indicating that there is a good potential for an industrial application aiming at the separation of propylene/propane. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42916.  相似文献   
90.
Janus nanorods are used as a novel rigid compatibilizer to improve the interfacial tension of incompatible A/B homopolymer blends. Dissipative particle dynamics (DPD) methods are preformed to explore the effect of Janus nanorods on the interfacial tension. The results show that Janus nanorods are a good compatibilizer only when the appropriate length is chosen, which is different from the traditional coil compatibilizer (surfactants and block copolymers). The length of the Janus nanorods can significantly influence their orientation through the competition between the entropic and enthalpic effects. The shorter Janus nanorods preferring “standing” have a better efficiency in improving the interfacial tension than the longer ones preferring “lying.” If we can control the orientation of the longer Janus nanorods, they are still a good compatibilizer. This simulation work can widen the application of Janus nanoparticles. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44098.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号