首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26500篇
  免费   2030篇
  国内免费   1519篇
电工技术   975篇
综合类   1442篇
化学工业   3995篇
金属工艺   2344篇
机械仪表   1422篇
建筑科学   638篇
矿业工程   1783篇
能源动力   396篇
轻工业   2031篇
水利工程   93篇
石油天然气   5432篇
武器工业   216篇
无线电   3075篇
一般工业技术   2676篇
冶金工业   1552篇
原子能技术   1662篇
自动化技术   317篇
  2024年   194篇
  2023年   736篇
  2022年   682篇
  2021年   829篇
  2020年   775篇
  2019年   900篇
  2018年   495篇
  2017年   681篇
  2016年   790篇
  2015年   808篇
  2014年   1712篇
  2013年   1453篇
  2012年   1571篇
  2011年   1411篇
  2010年   1289篇
  2009年   1289篇
  2008年   1431篇
  2007年   1316篇
  2006年   1241篇
  2005年   1256篇
  2004年   1293篇
  2003年   1222篇
  2002年   854篇
  2001年   844篇
  2000年   636篇
  1999年   612篇
  1998年   469篇
  1997年   523篇
  1996年   484篇
  1995年   439篇
  1994年   372篇
  1993年   318篇
  1992年   282篇
  1991年   277篇
  1990年   232篇
  1989年   200篇
  1988年   34篇
  1987年   21篇
  1986年   13篇
  1985年   7篇
  1984年   6篇
  1983年   4篇
  1982年   29篇
  1981年   13篇
  1980年   3篇
  1959年   1篇
  1951年   2篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
激光诱导等离子体光学诊断方法研究综述   总被引:1,自引:0,他引:1  
激光诱导等离子体是多种工业应用领域的研究热点,然而到目前为止人们对其基本物理过程的认识仍不完善。为此,综述了当前常用的激光诱导等离子体的光学诊断方法,从自辐射探测、关键参数计算、空间折射率分布等角度,分别从原理和技术方面介绍了基于ICCD和条纹相机的可见光快速照相、发射光谱分析、激光阴影/纹影成像、激光干涉、以及汤姆逊散射等方法,并比较了不同诊断方法的优缺点。结合激光诱导等离子体自身的特点,分别指出了使用不同诊断方法时值得注意的地方,以及使用激光阴影、纹影和干涉成像时对激光探针参数的选择依据。给出了几种实验诊断方法的典型结果,并进行了结果的分析与讨论。结果表明:快速照相技术有助于获得直观的等离子体演化图像,而可见光谱诊断则可较为方便的定量获得等离子体特征参数;通过使用激光探针了等离子体的折射率场,有助于进一步分析其空间密度分布;而发展汤姆逊散射诊断技术,则能够获得更为准确和丰富的等离子体微观信息。需要注意的是,当利用可见光谱诊断技术计算分析等离子体参数时,要考虑特定时空环境下等离子体热平衡态的影响;使用激光探针诊断等离子体的折射率场时,要根据具体的等离子体对象选择合适的激光波长、能量、脉宽等探针参数。在未来的研究中,通过综合运用快速照相、空间光谱诊断和激光探针技术,可望进一步深入掌握等离子体中多组分粒子行为以及微观热平衡态的时空演化关系。  相似文献   
992.
为理解喷射等离子体触发气体开关的导通过程和触发机理,利用高速分幅相机拍摄火花放电喷射等离子体触发气体开关的导通过程,结合开关导通时延测量,研究了该开关在10%~90%工作系数下的触发导通特性,分析了开关在高、低工作系数下的导通过程和工作模式。结果表明,火花放电喷射等离子体触发气体开关在10%~90%的极宽工作系数范围内能可靠触发导通,导通时延随工作系数提高而逐步从数十μs减小至数百ns。低工作系数时气体开关为慢导通模式,导通过程可分为喷射等离子体形成阶段、喷射等离子体快速发展阶段、喷射等离子体发展饱和阶段和主间隙放电4个阶段,其导通延时受工作系数和触发脉冲幅值的影响,为数μs至数十μs。随着开关工作系数提高,开关由慢导通模式逐步过渡到快导通模式,导通过程只包括喷射等离子体形成阶段和主间隙放电两个阶段,放电发展过程较为迅速,导通时延约为数百ns。  相似文献   
993.
脉冲放电等离子体再生吸附AO7饱和活性碳   总被引:1,自引:0,他引:1  
为了说明脉冲放电等离子体对吸附有机物饱和活性炭的再生作用,以酸性橙II(AO7)为目标物,建立了吸附AO7饱和活性炭的气液混合的脉冲放电等离子体再生体系,考察了该再生体系中的关键因素,包括水溶液电导率、载气流速、活性炭量及再生时间对活性炭再生效果的影响规律。研究结果表明:一定的放电操作参数下,在实验所考察的参数变化范围内,增加水溶液电导率,减少活性炭投加量,活性炭的再生效率随之提高;较高的水溶液电导率(1 000μS/cm)和较低的活性炭添加量(1 g)有利于活性炭再生;适宜的载气流速(2 L/min)和放电作用时间(60 min)下的活性炭再生效率较高;相应操作条件下的活性炭在20.4 kV脉冲峰值电压和50 Hz脉冲频率的等离子体作用体系中的再生效率可达71.6%。  相似文献   
994.
脉冲放电等离子体作用于难生物降解有机污染物表现出高氧化性。土壤污染物中,多环芳烃具有高稳定性特征。为此,以典型多环芳烃——芘为目标物,建立了多针-网电极形式的脉冲放电等离子体土壤修复体系,考察了该体系用于芘污染土壤修复时其主要电气参数如脉冲峰值电压、脉冲频率和电极间距,以及系统空气载气速率等变化对修复体系中芘降解速率的影响规律。制成的模拟芘污染土壤中,芘的初始质量分数为0.01%。研究结果表明:建立的芘污染土壤修复体系中,升高脉冲峰值电压和脉冲频率可以提高修复体系的输出功率,有利于修复体系中芘的降解;加大电极间距不利于修复体系中芘的降解,10 mm的电极间距条件下该修复体系中芘的降解速率较高;相较0和2 L/min,该修复体系采用1 L/min的空气体积流量时的芘降解效果最佳。  相似文献   
995.
为研究改善染污高温硫化硅橡胶(HTV)憎水性的方法,采用大气压下的介质阻挡放电(DBD)产生低温等离子体射流,对高岭土染污后的HTV试片表面进行处理。在不同处理时间、盐密及灰密情况下,测量了染污高温硫化硅橡胶表面的接触角,研究其随时间的变化情况。研究发现:染污高温硫化硅橡胶表面在经过较短时间的低温等离子体射流处理之后,其憎水性得到了明显改善,接触角100°;并且随着迁移时间的增加,其憎水迁移速度明显加快,迁移5 h后接触角即110°。在重污秽情况下,随着处理时间的增加,其憎水性也得到相应改善,但效果并不理想,接触角普遍35°。通过对照试验及扫描电镜(SEM)成像可以得到该现象产生的原因是射流等离子体与HTV相互作用,加速了HTV憎水迁移过程导致的。  相似文献   
996.
郭伟杰 《电站辅机》2015,36(2):26-30,46
在台山EPR核电1号、2号机组中,首次选用了控氮不锈钢厚板作为安注箱的主体材料,安注箱还需按RCC-M 2007版标准进行制造。对控氮不锈钢厚板焊接的相关问题进行了总结,经过焊接工艺评定和焊接试验,解决了焊接方面的难题,并获得了一些应用RCC-M 2007版S篇标准的经验。  相似文献   
997.
为解决太赫兹(THz)行波管工作电流过小、输出功率低等问题,提出了基模多注工作模式的折叠波导行波管(TWT)。首先,获得了基模多注折叠波导色散特性;然后,对基模多注折叠波导的传输特性进行了模拟计算;最后,完成了0.14 THz基模多注折叠波导行波管的注波互作用特性分析。电子注参数为12 m A,15.75 k V时,获得的3 d B带宽为25 GHz(128 GHz~153 GHz),最大增益为33.61 d B,最大峰值功率为23 W;电子注参数为30 m A,15.75 k V时,在0.14 THz处获得了38 d B增益,最大脉冲输出功率为63.1 W。该方法能够有效增大THz行波管的工作电流,提高互作用增益及效率、3 d B带宽、输出功率;在增益相同时,基模多注行波管可以做得更短、更紧凑。  相似文献   
998.
高应力软岩巷道支护是目前巷道支护研究的重点和难点,由于该类巷道结构破碎,节理发育,岩体强度较低,造成巷道底鼓量大、片帮严重及拱顶剪切剥落。依据具体工程实例,分析认为软岩巷道变形破坏主要影响因素是支护方式不当、高地应力和岩溶水等共同作用造成了围岩强流变性。针对原支护存在的问题,结合软岩巷道支护对策,提出了锚、喷、注、索一体化的锚注支护技术方案。  相似文献   
999.
采用ICP-AES同时测定铅锌混合矿中铁、铜、砷、锌、镉、汞六种元素的含量,优化了实验条件,各元素的检出限为0.0069-0.07ug/mL,相对标准偏差为0.3%-4.72%,样品加标回收率为85.5%-112.8%。测试结果表明,该法测定铅锌矿的简单、准确、快速。  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号