首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   4篇
  国内免费   6篇
电工技术   3篇
综合类   1篇
化学工业   9篇
金属工艺   2篇
能源动力   16篇
无线电   28篇
一般工业技术   19篇
冶金工业   1篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   4篇
  2019年   3篇
  2018年   5篇
  2017年   8篇
  2016年   12篇
  2015年   11篇
  2014年   6篇
  2013年   5篇
  2012年   4篇
  2011年   13篇
  2009年   4篇
排序方式: 共有79条查询结果,搜索用时 15 毫秒
71.
The kesterite‐structured semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4 are drawing considerable attention recently as the active layers in earth‐abundant low‐cost thin‐film solar cells. The additional number of elements in these quaternary compounds, relative to binary and ternary semiconductors, results in increased flexibility in the material properties. Conversely, a large variety of intrinsic lattice defects can also be formed, which have important influence on their optical and electrical properties, and hence their photovoltaic performance. Experimental identification of these defects is currently limited due to poor sample quality. Here recent theoretical research on defect formation and ionization in kesterite materials is reviewed based on new systematic calculations, and compared with the better studied chalcopyrite materials CuGaSe2 and CuInSe2. Four features are revealed and highlighted: (i) the strong phase‐competition between the kesterites and the coexisting secondary compounds; (ii) the intrinsic p‐type conductivity determined by the high population of acceptor CuZn antisites and Cu vacancies, and their dependence on the Cu/(Zn+Sn) and Zn/Sn ratio; (iii) the role of charge‐compensated defect clusters such as [2CuZn+SnZn], [VCu+ZnCu] and [ZnSn+2ZnCu] and their contribution to non‐stoichiometry; (iv) the electron‐trapping effect of the abundant [2CuZn+SnZn] clusters, especially in Cu2ZnSnS4. The calculated properties explain the experimental observation that Cu poor and Zn rich conditions (Cu/(Zn+Sn) ≈ 0.8 and Zn/Sn ≈ 1.2) result in the highest solar cell efficiency, as well as suggesting an efficiency limitation in Cu2ZnSn(S,Se)4 cells when the S composition is high.  相似文献   
72.
低成本、高效率的薄膜太阳电池是未来光伏产业发展的重要方向之一。主要介绍了目前备受关注的薄膜太阳电池,包括硅基薄膜太阳电池、铜铟镓硒与铜锌锡硫薄膜太阳电池,及砷化镓薄膜太阳电池等,简述了它们的各自特点、研究现状、主要技术路线和产业化发展等情况。最后展望了薄膜太阳电池未来的发展趋势。  相似文献   
73.
采用操作简单的化学水浴法(CBD)在普通载玻片上制备了太阳能电池用缓冲层硫化镉薄膜。通过改变反应温度、溶液p H值和退火温度等实验条件,探讨了硫化镉薄膜的最佳制备工艺条件,并利用X射线衍射仪、紫外-可见-分光光度计和电化学工作站对生成的薄膜样品进行了表征。结果表明,制备均匀性好、致密、覆盖度好的硫化镉薄膜的最佳实验条件如下:反应温度为70℃,溶液p H值为10,且后续在350℃温度下进行热处理1 h。此条件下得到的硫化隔薄膜的可见光透过率较高,具有明显的光电导现象;通过计算,最优实验条件下获得薄膜的禁带宽度为2.3 5 e V,与理论值2.42 e V很接近。  相似文献   
74.
Cu2MgSnS4(CZTS)is a promising photovoltaic absorber material,however,efficiency is largely hindered by potential fluctuation and a band tailing problem due to the abundance of defect complexes and low formation energy of an intrinsic CuZndefect.Alternatives to CZTS by group I,II,or IV element replacement to circumvent this challenge has grown research in-terest.In this work,using a hybrid(HSE06)functional,we demonstrated the qualitative similarity of defect thermodynamics and electronic properties in Cu2MgSnS4(CMTS)to CZTS.We show SnMgto be abundant when in Sn-and Cu-rich condition,which can be detrimental,while defect properties are largely similar to CZTS in Sn-and Cu-poor.Under Sn-and Cu-poor chemic-al potential,there is a general increase in formation energy in most defects except SnMg,CuMgremains as the main contribu-tion to p-type carriers,and SnMgmay be detrimental because of a deep defect level in the mid gap and the possibility of form-ing defect complex SnMg+MgSn.Vacancy diffusion is studied using generalized gradient approximation,and we find similar va-cancy diffusion properties for Cu vacancy and lower diffusion barrier for Mg vacancy,which may reduce possible Cu-Mg dis-order in CMTS.These findings further confirm the feasibility of CMTS as an alternative absorber material to CZTS and suggest the possibility for tuning defect properties of CZTS,which is crucial for high photovoltaic performance.  相似文献   
75.
Cu2ZnSnS4 (CZTS) is a kesterite semiconductor consisting of abundantly available elements. It has a band gap of 1.5 eV and a large absorption coefficient. Hence, thin films made of this material can be used as absorber layers of a solar cell. CZTS films were deposited on soda lime and Na free borosilicate glass substrates through Ultrasonic Spray Pyrolysis. The diffusion of sodium from soda lime glass was found to have a profound effect on characteristics like grain size, crystal texture and conductivity of CZTS thin films. Copper ion concentration also varied during the deposition and it was observed that the carrier concentration was enhanced when there was a deficiency of copper in the films. The effect of sodium diffusion and copper deficiency in enhancing the structural and electrical properties of CZTS films are presented in this paper.  相似文献   
76.
The impacts of preheating of an electrodeposited Cu/Sn/Zn (CTZ) stack precursor on structural changes of the CTZ precursor and the impact on structural and electric properties of the finally obtained Cu2ZnSnS4 (CZTS) films are discussed in detail. We found that preheating for relatively long durations improved the qualities of CZTS films: these films were composed of large grains and had compact and flat surface morphologies. The best solar cell with efficiency of 8.1% was obtained on the basis of a CZTS film derived from the CTZ precursor preheated for 200 min. The external quantum efficiency response of the cell indicated efficient utilization of photons with relatively long wavelength regions because of its good structural and electronic properties. On the other hand, a short circuit current density–temperature property of one of the best cells in this study suggested that the CZTS film had deep acceptor levels and/or an appreciable energy barrier to the Mo back contact. Moreover, an open circuit voltage–temperature property of the corresponding device showed activation energy of 1.18 eV, indicating preferential occurrence of CdS–CZTS interface recombination. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
77.
Cu2ZnSnS4 (CZTS) is a promising thin‐film absorber material that presents some interesting challenges in fabrication when compared with Cu(In,Ga)Se2. We introduce a two‐step process for fabrication of CZTS films, involving reactive sputtering of a Cu‐Zn‐Sn‐S precursor followed by rapid annealing. X‐ray diffraction and Raman measurements of the sputtered precursor suggest that it is in a disordered, metastable CZTS phase, similar to the high‐temperature cubic modification reported for CZTS. A few minutes of annealing at 550 °C are sufficient to produce crystalline CZTS films with grain sizes in the micrometer range. The first reported device using this approach has an AM1.5 efficiency of 4.6%, with Jsc and Voc both appearing to be limited by interface recombination. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
78.
Chemical analysis of individual atom columns was carried out to determine the crystal structure and local point defect chemistry of Cu2ZnSnS4. Direct evidence for a nanoscale composition inhomogeneity, in the form of Zn enrichment and Cu depletion, was obtained. The lateral size of the composition inhomogeneity was estimated to be between ~1.5 and 5 nm. Photoluminescence confirmed the presence of a broad donor–acceptor transition consistent with the observed cation disorder. Areas of relatively high concentration of ZnCu+ antisite atom donors locally increases the electrostatic potential and gives rise to band bending. Troughs in the conduction band and peaks in the valence band are ‘potential wells’ for electrons and holes, respectively. For a solar cell, these prevent minority carrier electrons from diffusing towards the edge of the space charge region, thereby reducing the carrier separation efficiency as well as reducing the carrier collection efficiency of majority carrier holes. Furthermore, electrons and holes ‘trapped’ within potential wells in close proximity have a high probability of recombining, so that the carrier lifetime is also reduced. High quality Cu2ZnSnS4 crystals free from composition inhomogeneities are therefore required for achieving high efficiency solar cell devices. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
79.
Earth abundant kesterite solar cells have achieved 7–10% cell efficiency mostly by processes that separate the film deposition and the annealing into two sequential steps. In contrast, co‐evaporation onto a high‐temperature substrate, demonstrating previous success in chalcopyrite (Cu(In,Ga)Se2) solar cells, allows real‐time composition control. Chalcopyrite research widely supports the model that Cu‐rich growth conditions assist grain growth, and subsequently, the endpoint composition can be adjusted back to Cu‐poor via monitoring the surface emissivity of the film. On the basis of the same intentions, the recent development of co‐evaporated kesterite (Cu2ZnSnSe4) adapts the concept and achieves 9.2% efficiency. To understand the effect of growth strategies, this study examines the phase evolution, grain morphology, and device performance in Cu‐rich growth and other strategies (Zn‐rich and close‐to‐stoichiometric). By characterizing films obtained from interrupted depositions and also interpreting the variation in surface emission during growths, this study found a subtle hindrance in the reaction of CuxSey and ZnSe possibly caused by the volatile nature of SnSex. The hindrance explains why, distinctive from chalcopyrite, little difference in grain size is observed between kesterite films made by Cu‐rich versus Zn‐rich growth at these deposition rates. At last, a Zn‐rich growth 9.1% device, certified by the National Renewable Energy Laboratory, is presented, which equals the performance of the previously‐reported Cu‐rich growth device. At the present stage, we believe the Cu‐rich and Zn‐rich growth share equal promise for the optimization of kesterite solar cells. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号