首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14874篇
  免费   1151篇
  国内免费   754篇
电工技术   329篇
综合类   511篇
化学工业   3460篇
金属工艺   1704篇
机械仪表   450篇
建筑科学   33篇
矿业工程   39篇
能源动力   585篇
轻工业   607篇
水利工程   2篇
石油天然气   37篇
武器工业   30篇
无线电   2589篇
一般工业技术   5973篇
冶金工业   140篇
原子能技术   133篇
自动化技术   157篇
  2024年   23篇
  2023年   186篇
  2022年   134篇
  2021年   298篇
  2020年   289篇
  2019年   302篇
  2018年   358篇
  2017年   456篇
  2016年   433篇
  2015年   486篇
  2014年   624篇
  2013年   937篇
  2012年   939篇
  2011年   1388篇
  2010年   1034篇
  2009年   1044篇
  2008年   957篇
  2007年   1049篇
  2006年   908篇
  2005年   666篇
  2004年   683篇
  2003年   575篇
  2002年   544篇
  2001年   445篇
  2000年   360篇
  1999年   247篇
  1998年   255篇
  1997年   231篇
  1996年   146篇
  1995年   122篇
  1994年   109篇
  1993年   89篇
  1992年   97篇
  1991年   98篇
  1990年   62篇
  1989年   35篇
  1988年   30篇
  1987年   22篇
  1986年   21篇
  1985年   21篇
  1984年   13篇
  1983年   8篇
  1982年   10篇
  1981年   5篇
  1979年   3篇
  1978年   6篇
  1976年   7篇
  1975年   6篇
  1974年   9篇
  1957年   2篇
排序方式: 共有10000条查询结果,搜索用时 125 毫秒
11.
By mans of a chemical synthesis technique stoichiometric CdTe-nanocrystals thin films were prepared on glass substrates at 70 °C. First, Cd(OH)2 films were deposited on glass substrates, then these films were immersed in a growing solution prepared by dissolution of Te in hydroxymethane sulfinic acid to obtain CdTe. The structural analysis indicates that CdTe thin films have a zinc-blende structure. The average nanocrystal size was 19.4 nm and the thickness of the films 170 nm. The Raman characterization shows the presence of the longitudinal optical mode and their second order mode, which indicates a good crystalline quality. The optical transmittance was less than 5% in the visible region (400–700 nm). The compositional characterization indicates that CdTe films grew with Te excess.  相似文献   
12.
《Ceramics International》2020,46(13):21196-21201
In this work, TiO2/ZrO2 bilayer thin film was prepared on fluorine doped tin oxide (FTO)/glass substrates by using a simple and low-cost chemical solution deposition method. Reproducible bipolar resistive switching (RS) characteristics in Au/TiO2/ZrO2/FTO/glass devices are reported in this work. TiO2/ZrO2 bilayer thin films prepared in this work shows reversible bipolar resistive switching and unidirectional conduction performances under applying voltage and these special performances of TiO2/ZrO2 bilayer thin films was first reported. Obvious resistive switching performance can be observed after setting a compliance current, the ratio of high/low resistance reached about 100 at a read voltage of +0.1V and −0.1V and the RS properties showed no obvious degradation after 100 successive cycles tests. The resistive switching characteristics of Au/TiO2/ZrO2/FTO/glass device can be explained by electron trapping/detrapping related with the vacancy oxygen defects in TiO2/ZrO2 bilayer thin film layer. According to slope fitting, the main conduction mechanisms of the sample are Ohmic and Space charge limited current mechanism.  相似文献   
13.
14.
A new strategy for the selective coating of tin sulfide (SnS) on the surface of moth‐eye patterned (MEP) conducting polymer film is studied by considering the optical properties of the antireflective moth‐eye pattern and flexibility of polymer films. The semiconductor SnS is selectively coated on the surface of MEP microdomes of poly(3,4‐ethylenedioxythiophene) poly(styrene‐sulfonate) (PEDOT:PSS) film. The SnS coated MEP film is obtained by using pore selectively SnS thin layer functionalized polystyrene honeycomb‐patterned porous (HCP) film as a template. Aqueous PEDOT:PSS solution is poured on the SnS functionalized HCP films and detached for the fabrication of SnS coated MEP films. The films show a satisfactory photo‐responsive property under solar stimulated light illumination due to the antireflective MEP structure of PEDOT film and homogenous SnS coating on the surface of the conducting polymer.  相似文献   
15.
《Ceramics International》2020,46(7):9218-9224
High-performance environment-friendly piezoelectric potassium sodium niobate (KNN)-based thin films have been emerged as promising lead-free candidates, while their substrate-dependent piezoelectricity faces the lack of high-quality information due to restraints in measurements. Although piezoresponse force microscopy (PFM) is a potential measuring tool, still its regular mode is not considered as a reliable characterization method for quantification. After combining machine-learning enabled analysis using PFM datasets, it is possible to measure piezoelectric properties quantitatively. Here we utilized advanced PFM technology empowered by machine learning to measure and compare the piezoelectricity of KNN based thin films on different substrates. The results provide a better understanding of the relationship between structures and piezoelectric properties of the thin films.  相似文献   
16.
Most researches on graphene/polymer composites are focusing on improving the mechanical and electrical properties of polymers at low graphene content instead of paying attention to constructing graphene’s macroscopic structures. In current study the homo-telechelic functionalized polyethylene glycols (FPEGs) were tailored with π-orbital-rich groups (namely phenyl, pyrene and di-pyrene) via esterification reactions, which enhanced the interaction between polyethylene glycol (PEG) molecules and chemical reduced graphene oxide (RGO) sheets. The π–π stacking interactions between graphene sheets and π-orbital-rich groups endowed the composite films with enhanced tensile strength and tunable electrical conductivity. The formation of graphene network structure mediated by the FPEGs fillers via π–π stacking non-covalent interactions should account for the experimental results. The experimental investigations were also complemented with theoretical calculation using a density functional theory. Atomic force microscope (AFM), scanning electron microscope (SEM), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), thermal gravimetric analysis (TGA), UV–vis and fluorescence spectroscopy were used to monitor the step-wise preparation of graphene composite films.  相似文献   
17.
In this article, Fe‐Tetranitro phthalocyanine (Fe‐TNPc)/polyurethane (PU) blends were prepared by solution blending. The mechanical properties of the samples were studied by tensile tests. The results showed that the tensile strength and the elongation at break of the samples increased with increasing Fe‐TNPc content. The improved mechanical properties for the samples containing Fe‐TNPc was attributed to the increased microphase separation degree of PU, which was further investigated by dynamic mechanical analysis (DMA) and Fourier transform infrared analysis. The lower Tg of the soft segments and the higher Tg of the hard segments for the samples containing Fe‐TNPc indicated an increase of microphase separation degree of PU. The increased hydrogen bonded carbonyl groups in the samples with increasing Fe‐TNPc content also proved the conclusion. Quantitative evaluation of the interaction between Fe‐TNPc and PU was also investigated by analyzing the physical crosslinking density of the samples. The results indicated that the physical crosslinking density of the samples increased with increasing Fe‐TNPc content. The antibacterial properties of the samples were investigated. The results showed that the percentage bacterial inactivation toward S. aureus and E. coli of the samples were 98.9% and 90.9%, respectively, when Fe‐TNPc was added to 1%. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41284.  相似文献   
18.
Flexible pressure sensors have potential applications in human motion monitoring and electronic skins. To satisfy the practical applications, pressure sensors with a high sensitivity, a low detection limit, a broad response range, and an excellent stability are highly needed. Here, a piezoresistive pressure sensor based on wavy‐structured single‐walled carbon nanotube/graphite flake/thermoplastic polyurethane (SWCNT/GF/TPU) composite film is fabricated by a prestretching process. Due to the random wavy structure, high conductivity, and good flexibility, the prepared sensor displays a low detection limit of 2 Pa, a wide sensing range of 0–60 kPa, and a high sensitivity of 5.49 kPa?1 for 0–50 Pa. Furthermore, the sensor shows a remarkable repeatability of over 1.1 × 104, 9.0 × 103, and 2.0 × 103 pressure loading/unloading cycles at 50 Pa, 500 Pa, and 30 kPa, respectively, and a fast responsibility of 100–150 ms of loading response time and 400–600 ms of relaxation time. Therefore, the pressure sensor is successfully adopted to monitor both the large‐scale human activities (e.g., walk and jump) and the small‐scale signals (e.g., wrist pulse). Furthermore, a sensor array is assembled to map the weight and shape of an object, indicating its various potential applications including human–machine interactions, human health monitoring, and other wearable electronics.  相似文献   
19.
Porous polyimide (PI) films with low dielectric constants and excellent thermal properties have been a pressing demand for the next generation of high-performance, miniature, and ultrathin microelectronic devices. A series of novel porous PI films containing fluorenyl-adamantane groups were prepared successfully via thermolysis of poly(ethylene glycol) (PEG) added in the PI matrix. The cross-sectional morphologies of porous PI films showed closed pores with diameters ranging from 135 to 158 nm, which were uniform and regular in shape without interconnectivity. These porous PI films exhibited excellent thermal properties with a glass-transition temperature at 376 °C whereas the 5% weight loss temperature in air excess of 405 °C due to enhanced rigidity afforded by fluorenyl-adamantane groups. Accompanied by thermolysis content of PEG increasing from 0 to 20 wt %, the density of porous PI films decreased, and the corresponding porosity grew significantly from 0 to 11.48%. Depending on porosity, the dielectric constant and dielectric loss of porous PI films significantly declined from 2.89 to 2.37 and from 0.050 to 0.021, respectively. These excellent properties benefit the as-prepared porous PI films for application as interlayer dielectrics, integrated circuit chips, or multichip modules in microelectronic fields. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47313.  相似文献   
20.
The annealing effects on the structural and electrical properties of fluorinated amorphous carbon (a-C:F) thin films prepared from C6F6 and Ar plasma are investigated in a N2 environment at 200 mTorr. The a-C:F films deposited at room temperature are thermally stable up to 250 °C, but as the annealing temperature is increased beyond 300 °C, the fluorine incorporation in the film is reduced, and the degree of crosslinking and graphitization in the film appears to be enhanced. At the annealing temperature of 250 °C, the chemical bond structures of the film are unchanged noticeably, but the interface trapped charges between the film and the silicon substrate are reduced significantly. The increased annealing temperature contributes the decrease of both the interface charges and the effective charge density in the a-C:F film. Higher self-bias voltage is shown to reduce the charge density in the film.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号