首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41087篇
  免费   3423篇
  国内免费   2896篇
电工技术   757篇
技术理论   1篇
综合类   3605篇
化学工业   4327篇
金属工艺   6137篇
机械仪表   3035篇
建筑科学   6483篇
矿业工程   905篇
能源动力   1086篇
轻工业   2237篇
水利工程   1107篇
石油天然气   1004篇
武器工业   320篇
无线电   1831篇
一般工业技术   10754篇
冶金工业   2200篇
原子能技术   275篇
自动化技术   1342篇
  2024年   88篇
  2023年   541篇
  2022年   788篇
  2021年   1183篇
  2020年   1278篇
  2019年   1177篇
  2018年   997篇
  2017年   1318篇
  2016年   1411篇
  2015年   1541篇
  2014年   2206篇
  2013年   2305篇
  2012年   2413篇
  2011年   2878篇
  2010年   2299篇
  2009年   2532篇
  2008年   2361篇
  2007年   2822篇
  2006年   2439篇
  2005年   2140篇
  2004年   1840篇
  2003年   1566篇
  2002年   1396篇
  2001年   1158篇
  2000年   1093篇
  1999年   819篇
  1998年   739篇
  1997年   692篇
  1996年   572篇
  1995年   455篇
  1994年   388篇
  1993年   301篇
  1992年   310篇
  1991年   257篇
  1990年   246篇
  1989年   182篇
  1988年   152篇
  1987年   68篇
  1986年   54篇
  1985年   73篇
  1984年   89篇
  1983年   55篇
  1982年   54篇
  1981年   25篇
  1980年   18篇
  1979年   20篇
  1977年   13篇
  1976年   8篇
  1975年   8篇
  1974年   11篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
This paper examines the dynamics of entrepreneurial acquisitions undertaken by UK high growth small and medium enterprises (SMEs). While entrepreneurial acquisitions are increasingly deployed by SMEs, little is known about their antecedents, motivational drivers and organisational outcomes. Drawing on detailed case study evidence from Scotland, the key factor found to be driving these acquisitions was the desire to augment and exploit technological complementarities between the acquiring and acquired firms. Acquisition can therefore be conceptualised as an advanced stage of the outside-in ‘open innovation’ strategies proactively used within these innovative SMEs. Firms executing this strategy typically have an acute propensity for risk, a desire for close customer engagement, effective business models and strong external orientation. The work suggests that greater attention should be paid within M&A theory to the dynamics of these types of smaller scale entrepreneurial acquisitions.  相似文献   
992.
Control of the precise lattice alignment of monolayer molybdenum disulfide (MoS2) on hexagonal boron nitride (h‐BN) is important for both fundamental and applied studies of this heterostructure but remains elusive. The growth of precisely aligned MoS2 domains on the basal plane of h‐BN by a low‐pressure chemical vapor deposition technique is reported. Only relative rotation angles of 0° or 60° between MoS2 and h‐BN basal plane are present. Domains with same orientation stitch and form single‐crystal, domains with different orientations stitch and from mirror grain boundaries. In this way, the grain boundary is minimized and a continuous film stitched by these two types of domains with only mirror grain boundaries is obtained. This growth strategy is also applicable to other 2D materials growth.  相似文献   
993.
High‐quality and large‐area molybdenum disulfide (MoS2) thin film is highly desirable for applications in large‐area electronics. However, there remains a challenge in attaining MoS2 film of reasonable crystallinity due to the absence of appropriate choice and control of precursors, as well as choice of suitable growth substrates. Herein, a novel and facile route is reported for synthesizing few‐layered MoS2 film with new precursors via chemical vapor deposition. Prior to growth, an aqueous solution of sodium molybdate as the molybdenum precursor is spun onto the growth substrate and dimethyl disulfide as the liquid sulfur precursor is supplied with a bubbling system during growth. To supplement the limiting effect of Mo (sodium molybdate), a supplementary Mo is supplied by dissolving molybdenum hexacarbonyl (Mo(CO)6) in the liquid sulfur precursor delivered by the bubbler. By precisely controlling the amounts of precursors and hydrogen flow, full coverage of MoS2 film is readily achievable in 20 min. Large‐area MoS2 field effect transistors (FETs) fabricated with a conventional photolithography have a carrier mobility as high as 18.9 cm2 V?1 s?1, which is the highest reported for bottom‐gated MoS2‐FETs fabricated via photolithography with an on/off ratio of ≈105 at room temperature.  相似文献   
994.
The anisotropic two-dimensional (2D) layered material rhenium disulfide (ReSe2) has attracted considerable attention because of its unusual properties and promising applications in electronic and optoelectronic devices.However,because of its low lattice symmetry and interlayer decoupling,anisotropic growth and out-of-plane growth occur easily,yielding thick flakes,dendritic structure,or flower-like structure.In this study,we demonstrated a bottom-up method for the controlled and scalable synthesis of ReSe2 by van der Waals epitaxy.To achieve controllable growth,a micro-reactor with a confined reaction space was constructed by stacking two mica substrates in the chemical vapor deposition system.Within the confined reaction space,the nucleation density and growth rate of ReSe2 were significantly reduced,favoring the large-area synthesis of ReSe2 with a uniform monolayer thickness.The morphological evolution of ReSe2 with growth temperature indicated that the anisotropic growth was suppressed at a low growth temperature (<600 ℃).Field-effect transistors employing the grown ReSe2 exhibited p-type conduction with a current ON/OFF ratio up to 10s and a hole carrier mobility of 0.98 cm2/(V.s).Furthermore,the ReSe2 device exhibited an outstanding photoresponse to near-infrared light,with responsivity up to 8.4 and 5.1 A/W for 850-and 940-nm light,respectively.This work not only promotes the large-scale application of ReSe2 in high-performance electronic devices but also clarifies the growth mechanism of low-lattice symmetry 2D materials.  相似文献   
995.
Nanowires with inhomogeneous heterostructures such as polytypes and periodic twin boundaries are interesting due to their potential use as components for optical,electrical,and thermophysical applications.Additionally,the incorporation of metal impurities in semiconductor nanowires could substantially alter their electronic and optical properties.In this highlight article,we review our recent progress and understanding in the deliberate induction of imperfections,in terms of both twin boundaries and additional impurities in germanium nanowires for new/enhanced functionalities.The role of catalysts and catalyst-nanowire interfaces for the growth of engineered nanowires via a three-phase paradigm is explored.Three-phase bottom-up growth is a feasible way to incorporate and engineer imperfections such as crystal defects and impurities in semiconductor nanowires via catalyst and/or interfacial manipulation."Epitaxial defect transfer"process and catalyst-nanowire interfacial engineering are employed to induce twin defects parallel and perpendicular to the nanowire growth axis.By inducing and manipulating twin boundaries in the metal catalysts,twin formation and density are controlled in Ge nanowires.The formation of Ge polytypes is also observed in nanowires for the growth of highly dense lateral twin boundaries.Additionally,metal impurity in the form of Sn is injected and engineered via third-party metal catalysts resulting in above-equilibrium incorporation of Sn adatoms in Ge nanowires.Sn impurities are precipitated into Ge bi-layers during Ge nanowire growth,where the impurity Sn atoms become trapped with the deposition of successive layers,thus giving an extraordinary Sn content (>6 at.%) in Ge nanowires.A larger amount of Sn impingement (>9 at.%) is further encouraged by utilizing the eutectic solubility of Sn in Ge along with impurity trapping.  相似文献   
996.
Graphene oxide/gold nanorod (GO/GNR) nanohybrids were synthesized with a GO- and gold-seed-mediated in situ growth method at room temperature by mixing polystyrene sulfonate (PSS) functionalized GO, secondary growth solution, and gold seeds. Compared with ex situ preparation methods of GO/GNRs or graphene (G)/GNRs, the in situ synthesis of GO/GNRs addressed the issue of the aggregation of the GNRs before their attachment onto the GO. The method is straightforward and environment-friendly. The GO/GNRs showed a remarkable photothermal effect in vitro. The temperature of the GO/GNR nanohybrids increased from 25 to 49.9 °C at a concentration of 50 μg/mL after irradiation with an 808-nm laser (0.4 W/cm2) for 6 min. Additionally, the GO/GNRs exhibited good optical and morphological stability and photothermal properties after six cycles of laser irradiation. Upon injection of the GO/GNRs into xenograft tumors, excellent computed tomography (CT) imaging properties and photothermal effect were obtained. The preclinical CT agent iohexol was combined with the GO/GNRs and further enhanced CT imaging. Therefore, the GO/GNR nanohybrids have great potential for precise CT-image-guided tumor photothermal treatment.
  相似文献   
997.
Periodic collinear edge hole cracks and arbitrary small cracks emanating from collinear holes, which are two typical multiple site damages occurred in the aircraft structures, are studied by using the weigh function method. An explicit closed form weight function for periodic edge hole cracks in an infinite sheet is obtained and further used to calculate the stress intensity factor and crack opening displacement for various loading cases. Compared to finite element method, the present weight function is accurate and highly efficient. The interactions of the holes and cracks on the stress intensity factor and crack opening displacement are quantitatively determined by using the present weight function. An approximate weight function method is also proposed for arbitrary small cracks emanating from multiple collinear holes. This method is very useful for calculating the stress intensity factor for arbitrary small cracks.  相似文献   
998.
This work concerns the complex oscillatory singularities revealed in Williams's asymptotic solutions to stress fields around arbitrary interface cracks, which are the foundation of phenomenological interface fracture mechanics. First, we highlight the fatal discrepancy between the asymptotic stress fields for cracks in a homogeneous material obtained by assigning an identical material on both regions embracing an interface crack, and the solutions directly derived from cracks in a single material. Next, following a brief introduction to Williams's formulation process, we adopt the method of repeatedly eliminating variables instead of solving the determinant equation for the coefficient matrix to reformulate the asymptotic analysis of stress fields at arbitrary interface cracks. The resultant stresses get rid of oscillatory character. Further, under two specific loading conditions, namely, remotely uniaxial tension or shear, non‐oscillatory and non‐singular asymptotic solutions to stress fields around interface cracks are obtained.  相似文献   
999.
For ageing airframe structures, a critical challenge for next generation linear elastic fracture mechanics (LEFM) modelling is to predict the effect of corrosion damage on the remaining fatigue life and structural integrity of components. This effort aims to extend a previously developed LEFM modelling approach to field corroded specimens and variable amplitude loading. Iterations of LEFM modelling were performed with different initial flaw sizes and crack growth rate laws and compared to detailed experimental measurements of crack formation and small crack growth. Conservative LEFM‐based lifetime predictions of corroded components were achieved using a corrosion modified‐equivalent initial flaw size along with crack growth rates from a constant Kmax‐decreasing ΔK protocol. The source of the error in each of the LEFM iterations is critiqued to identify the bounds for engineering application.  相似文献   
1000.
This paper focuses on studying the fatigue crack growth (FCG) characteristics and fracture behaviours of 30 wt% B4C/6061Al composites fabricated by using powder metallurgy and hot extrusion method. Compact tension (CT) specimens having incisions parallel to the extrusion direction (T‐D) and perpendicular to the extrusion direction (E‐D) were investigated through FCG tests. Results show that, at low/medium stress‐intensity factor range levels (ΔK ≤ 9), crack propagation rate in E‐D specimens is lower than that in T‐D specimens because the elongated B4C particles parallel to the extrusion direction in E‐D specimens can deflect the crack. The scanning electron microscope micrographs of the fractured surface illustrate that crack mainly propagates in the matrix alloy at the initial stage of its propagation and propagates more remarkably near the particle‐matrix interface with the increase of ΔK value. B4C particles are also found to be easy to fracture during the rapid crack propagation. Based on fracture analyses, considering the impacts of factors like crack deviation, plastic zone size at the crack tip, and crack driving force, a 2‐D crack propagation model was developed to study the fatigue crack propagation mechanism in the 30 wt% B4C/6061Al composite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号