首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1625篇
  免费   403篇
  国内免费   2篇
综合类   9篇
化学工业   947篇
金属工艺   2篇
机械仪表   1篇
矿业工程   3篇
能源动力   3篇
轻工业   33篇
石油天然气   4篇
无线电   501篇
一般工业技术   515篇
原子能技术   9篇
自动化技术   3篇
  2024年   10篇
  2023年   172篇
  2022年   15篇
  2021年   145篇
  2020年   140篇
  2019年   130篇
  2018年   107篇
  2017年   115篇
  2016年   79篇
  2015年   102篇
  2014年   71篇
  2013年   104篇
  2012年   130篇
  2011年   76篇
  2010年   76篇
  2009年   85篇
  2008年   72篇
  2007年   67篇
  2006年   74篇
  2005年   56篇
  2004年   62篇
  2003年   56篇
  2002年   37篇
  2001年   17篇
  2000年   7篇
  1999年   4篇
  1998年   5篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   3篇
  1984年   3篇
排序方式: 共有2030条查询结果,搜索用时 46 毫秒
81.
82.
The contradiction between the porous structure and density of graphene materials makes it unable to meet the dual requirements of the next generation supercapacitors for gravimetric capacitance and volumetric capacitance. Herein, we successfully synthesized high-density oxygen-enriched graphene hydrogels (HOGHs) by a one-step hydrothermal method using high concentration graphene oxide (GO) solution and trometamol as precursors. The as-prepared HOGHs samples present a dense 3D network structure and moderate specific surface areas, which leads to a high packing density. In addition, the HOGHs samples also contain abundant oxygen-containing functional groups and some nitrogen-containing functional groups. These heteroatomic functional groups can provide pseudocapacitance for the electrode materials. Therefore, the HOGH-140 based symmetric supercapacitor shows ultrahigh gravimetric and volumetric specific capacitance (325.7 F g−1, 377.8 F cm−3), excellent rate performance and cycling stability. Simultaneously, the symmetric binder-free supercapacitor exhibits high gravimetric specific energy density (11.3 Wh kg−1) and volumetric specific energy density (13.1 Wh L−1) in 6 M KOH, respectively. These outstanding properties make the material have a good application prospect in the field of compact energy storage devices.  相似文献   
83.
Polymeric hydrogels, water-swollen 3?D networks of the polymers, have found wide ranges of applications in the medical fields, such as wound care and wound dressing, in order to prevent infections. Prevention from microorganisms transfer in to the wounds is one of the ideal wound dressing duties of polyvinyl alcohol (PVA) hydrogels. In this study, at the start, under optimal conditions, nanoparticles of chitosan using ionotropic gelation method were synthesized and in the next step in order to achieve particles with a minimum size, they were evaluated by scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). Then after to obtain a wound dressing with preferable properties, nanocomposite hydrogels using a combination of PVA and 5, 10 and 15?wt% chitosan nanoparticles were prepared through freezing-thawing cycles. The necessary features of PVA nanocomposite hydrogels for wound dressing were investigated. The dispersion state of nanoparticles and structure of samples were evaluated by SEM microscopy. The nanoparticle size and the nanoparticle size distribution of chitosan was determined using the dynamic light scattering test at the nanometer scale. The physical behavior of hydrogels such as swelling and gel fraction was studied and their mechanical properties were investigated by compressive test. Finally the antimicrobial test and biocompatibility as cell viability were carried out. The results proved that the PVA nanocomposite hydrogels fulfill the requirements of a good wound dressing with desirable characteristics such as favorable swelling and acceptable strength, excellent barrier against microbial penetration.  相似文献   
84.
Chitosan (CS) has received much attention as a functional biopolymer for designing various hydrogels for biomedical applications. This review provides an overview of the different types of CS‐based hydrogels, the approaches that can be used to fabricate hydrogel matrices with specific features and their applications in controlled drug delivery and tissue engineering. Emphasis is laid on the recent design concepts of hybrid hydrogels based on mixtures of CS and natural or synthetic polymers, interpenetrating polymer networks as well as composite hydrogels prepared by embedding nanoparticles into CS matrices. © 2017 Society of Chemical Industry  相似文献   
85.
Carbon dioxide sensors for intelligent food packaging applications   总被引:3,自引:0,他引:3  
Recently, the demand for safe and high quality foods, as well as changes in consumer preferences have led to the development of innovative and novel approaches in food packaging technology. One such development is the smart or intelligent food packaging technology. Intelligent packaging has enabled to monitor and communicate information about food quality. This technology also helps to trace a product’s history through the critical points in the food supply chain. In general, occurrence of elevated CO2 gas level is the prime indicator of food spoilage in packed foods and also its maintenance at optimal levels is essential to avoid spoilage in foods packed under modified-atmosphere packaging (MAP) conditions. Hence, a CO2 sensor incorporated into food package can efficiently monitor product quality until it reaches the consumer. Although much progress has been made so far in the development of sensors monitoring CO2, most of them are not versatile for food packaging applications and suffers from limitations such as high equipment cost, bulkiness, and energy input requirement, including safety concerns. Therefore, the development of efficient CO2 sensors that can intelligently monitors the gas concentration changes inside a food package and specific to food packaging applications is essential. In the present review, progress on the development of different types of CO2 sensors such as optical sensors, polymer opal films, polymer hydrogels, etc., which can be readily applicable to food packaging applications, is discussed.  相似文献   
86.
Hydrogels studied in this investigation, synthesized starting from agarose and Carbomer 974P, were chosen for their potential use in tissue engineering. The strong ability of hydrogels to mimic living tissues should be complemented with optimized degradation time profiles: a critical property for biomaterials but essential for the integration with target tissue. In this study, chosen hydrogels were characterized both from a rheological and a structural point of view before studying the chemistry of their degradation, which was performed by several analysis: infrared bond response [Fourier transform infrared (FT‐IR)], calorimetry [differential scanning Calorimetry (DSC)], and % mass loss. Degradation behaviors of Agar‐Carbomer hydrogels with different degrees of crosslinkers were evaluated monitoring peak shifts and thermal property changes. It was found that the amount of crosslinks heavily affect the time and the magnitude related to the process. The results indicate that the degradation rates of Agar‐Carbomer hydrogels can be controlled and tuned to adapt the hydrogel degradation kinetics for different cell housing and drug delivery applications. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   
87.
With the number of deaths due to stroke decreasing, more individuals are forced to live with crippling disability resulting from the stroke. To date, no therapeutics exist after the first 4.5 h after the stroke onset, aside from rest and physical therapy. Following stroke, a large influx of astrocytes and microglia releasing proinflammatory cytokines leads to dramatic inflammation and glial scar formation, affecting brain tissue's ability to repair itself. Pathological conditions, such as a stroke, trigger neural progenitor cells (NPCs) proliferation and migration toward the damaged site. However, these progenitors are often found far from the cavity or the peri‐infarct tissue. Poststroke tissue remodeling results in a compartmentalized cavity that can directly accept a therapeutic material injection. Here, this paper shows that the injection of a porous hyaluronic acid hydrogel into the stroke cavity significantly reduces the inflammatory response following stroke while increasing peri‐infarct vascularization compared to nonporous hydrogel controls and stroke only controls. In addition, it is shown that the injection of this material impacts NPCs proliferation and migration at the subventricular zone niche and results, for the first time, in NPC migration into the stroke site.  相似文献   
88.
89.
The convenience of injectable hydrogels that can provide high loading of diverse phototherapy agents and further long-time retention at the tumor site has attracted tremendous interest in simultaneous photothermal and photodynamic cancer therapies. However, to incorporate the phototherapy agents into hydrogels, complex modifications are generally unavoidable. Moreover, these phototherapy agents usually suffer from low efficiency and work at different irradiation wavelengths outside the near infrared windows. Hence, a method for the fabrication of an injectable hydrogel for simultaneous photothermal therapy and photodynamic therapy, through the Schiff-base reaction between amido modified carbon dots (NCDs) and aldehyde modified cellulose nanocrystals is proposed. The NCDs act as both phototherapy agents and crosslinkers to form hydrogels. Significantly, the NCDs demonstrate an extremely high photothermal conversion efficiency of 77.6% which is among the highest levels for photothermal agents and a high singlet quantum yield of 0.37 under a single 660 nm light-emitting diode irradiation. The hydrogels are examined through in vitro and in vivo animal experiments which show nontoxic and effectively tumor inhibition. Thus, the strategy of direct reaction of phototherapy agents and the matrix not only provides new strategies for injectable hydrogel fabrication but paves a new road for advanced tumor treatment.  相似文献   
90.
Biomaterials with dynamically tunable properties are critical for a range of applications in regenerative medicine and basic biology. In this work, we show the reversible control of gelatin methacrylate (GelMA) hydrogel stiffness through the use of DNA crosslinkers. We replaced some of the inter-GelMA crosslinks with double-stranded DNA, allowing for their removal through toehold-mediated strand displacement. The crosslinks could be restored by adding fresh dsDNA with complementary handles to those on the hydrogel. The elastic modulus (G’) of the hydrogels could be tuned between 500 and 1000 Pa, reversibly, over two cycles without degradation of performance. By functionalizing the gels with a second DNA strand, it was possible to control the crosslink density and a model ligand in an orthogonal fashion with two different displacement strands. Our results demonstrate the potential for DNA to reversibly control both stiffness and ligand presentation in a protein-based hydrogel, and will be useful for teasing apart the spatiotemporal behavior of encapsulated cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号