首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   933篇
  免费   333篇
  国内免费   45篇
电工技术   6篇
综合类   32篇
化学工业   583篇
金属工艺   201篇
机械仪表   34篇
建筑科学   2篇
矿业工程   5篇
能源动力   20篇
轻工业   25篇
石油天然气   3篇
武器工业   4篇
无线电   63篇
一般工业技术   289篇
冶金工业   35篇
原子能技术   3篇
自动化技术   6篇
  2024年   4篇
  2023年   19篇
  2022年   18篇
  2021年   75篇
  2020年   71篇
  2019年   57篇
  2018年   79篇
  2017年   70篇
  2016年   90篇
  2015年   119篇
  2014年   101篇
  2013年   102篇
  2012年   30篇
  2011年   55篇
  2010年   34篇
  2009年   49篇
  2008年   49篇
  2007年   43篇
  2006年   50篇
  2005年   44篇
  2004年   28篇
  2003年   34篇
  2002年   25篇
  2001年   14篇
  2000年   10篇
  1999年   10篇
  1998年   7篇
  1997年   4篇
  1996年   12篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
排序方式: 共有1311条查询结果,搜索用时 15 毫秒
81.
N,N′‐ethylene–bis(salicylideneiminato)]–nickel(II) [Ni(salen)] was synthesized in situ onto the surface of multiwalled carbon nanotubes via a one‐step potentiostatic electrodeposition as one‐dimensional nanobelts. The synthetic process was free of any templates or additives. Potential played a key role in the formation of the poly[N,N′‐ethylene–bis(salicylideneiminato)]–nickel(II)] {poly[Ni(salen)]} nanobelts, and the electrical conductivities of the poly[Ni(salen)] decreased with increasing deposition time. The capacitance values of poly[Ni(salen)] were 272, 195, and 146 F/g at 0.05 mA/cm2 for deposition times of 10, 20, and 30 min, respectively. The capacitance of the sample with a particle structure was much lower than that of poly[Ni(salen)] with a nanobelt structure. The poly[Ni(salen)] nanobelts exhibited a better capacitive behavior than the poly[Ni(salen)] particles because the nanobelt structure made access for the charge and ion to the inner part of the electrode easier. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39561.  相似文献   
82.
The isothermal crystallization kinetics of PLA/fluoromica nanocomposites was studied. Three types of synthetic mica at three concentrations (2.5, 5.0, and 7.5 wt % mica) were used and the effect of these micas on the crystallization and thermal properties of PLA was investigated by differential scanning calorimetry (DSC). The Avrami and Hoffman‐Weeks equations were used to describe the isothermal crystallization kinetics and melting behavior. Addition of these micas to the PLA matrix increased the crystallization rate, and this effect depended on the mica type and concentration. While the nonmodified Somasif ME‐100 exerted the smallest effect, the effect observed for the organically modified Somasif MPE was the most pronounced. The lower half‐time of crystallization t1/2 was around 3 min for the PLA/Somasif MPE nanocomposites containing 7.5 wt % of filler at 90°C, which is about 16 min below that found for neat PLA. The equilibrium melting temperature ( ) of PLA were estimated for these systems, showing an increase in the composites and an increase with increasing loading, except for PLA/Somasif MPE, in which the increase of the mica content decreased about 5°C. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40322.  相似文献   
83.
A tough and highly flexible hyperbranched epoxy and poly(amido‐amine) modified bentonite based thermosetting nanocomposite was demonstrated. The FTIR, XRD, and TGA analyses confirmed the modification of bentonite. The formation of partially exfoliated structure of the nanocomposite with good physicochemical interactions among the hyperbranched epoxy, poly(amido‐amine) hardener and modified clay was investigated by the FTIR, XRD, SEM, and TEM analyses. Significant improvements of 750% toughness, 300% elongation at break, 50% tensile strength, 300% modulus, and 250% adhesive strength of the pristine epoxy were achieved by the formation of nanocomposites with 3 wt % of modified clay. The experimental modulus values of the nanocomposites were compared with three theoretical models to account the interactions between filler and matrix. Thus, the studied epoxy nanocomposite has great potential to be used as an advanced epoxy thermoset. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40327.  相似文献   
84.
The behavior of electrospun polyvinyl alcohol (PVA) and polyethylene oxide (PEO) nanofibers embedded with urea is studied as a function of various process parameters. Our results show that three‐dimensional nanofiber networks can be obtained when high concentrations of urea in the solution are used during electrospinning. The nanofibers are characterized using both scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The stability of the nanofiber as a function of electric field has also been studied. The successful formation of three‐dimensional nanofiber networks can open new trends toward applications in fertilizers containing nanofibers in the nanoagricultural field. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39840.  相似文献   
85.
In this study, thermoplastic poly(ester ether) elastomer (TPEE) nanocomposites with phosphorus–nitrogen (P–N) flame retardants and montmorillonite (MMT) were prepared by melt blending. The fire resistance of the nanocomposites was analyzed by limiting oxygen index (LOI) and vertical burning (UL 94) tests. The results show that the addition of the P–N flame retardants increased the LOI of the material from 17.3 to 27%. However, TPEE containing P–N flame retardants only obtained a UL 94 V‐2 ranking; this resulted in a flame dripping phenomenon. On the other hand, TPEE containing the P–N flame retardant and organically modified montmorillonite (o‐MMT) achieved better thermal stability and good flame retardancy; this was ascribed to its partially intercalated structure. The synergistic effect and synergism were investigated by Fourier transform infrared spectroscopy and thermogravimetry. The introduction of o‐MMT decreased the inhibition action of the P–N flame retardant and increased the amount of residues. The catalytic decomposition effect of MMT and the barrier effect of the layer silicates are discussed in this article. The residues after heating in the muffle furnace were analyzed by scanning electron microscopy, energy‐dispersive X‐ray spectroscopy and laser Raman spectroscopy. It was shown that the intercalated layer silicate structure facilitated the crosslinking interaction and promoted the formation of additional carbonaceous char residues in the formation of the compact, dense, folded‐structure surface char. The combination of the P–N flame retardant and o‐MMT in TPEE resulted in a better thermal stability and fire resistance because of the synergistic effect of the mixture. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41094.  相似文献   
86.
To prevent the degradation of the borehole and also the disintegration and dispersion of drilled cuttings, different shale stabilizing additives are used in water‐based drilling fluids (WBFs). Glycols, poly(ethylene glycol), glycerols, and polyglycerol derivatives, also called polyols, have been used to inhibit shales containing reactive clays in WBF. These additives are normally used in conjunction with KCl to reduce clay swelling and dispersion of drilled cuttings. Highly branched polymers have become an important field in current polymer science. Such materials typically exhibit compact, globular structures in combination with an exceptionally high number of sites with functional groups. They have unique properties that differ significantly from their linear counterparts, and the hyperbranched polyglycerol (hPG) is an important hyperbranched polymer that can be produced from an environmentally benign monomer, the glycerol carbonate. In this article, the clay inhibitive properties of hPG were evaluated by different test methods including bentonite inhibition test, cuttings recovery, and X‐ray diffraction measurements. The results show that the hPG has a great potential to be used as an environmental friendly inhibitor additive in WBFs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40384.  相似文献   
87.
Poly(p‐phenylene sulfide) (PPS) nanofibers are prepared by irradiating a PPS fiber with a carbon dioxide (CO2) laser while drawing it at supersonic speeds. A supersonic jet is generated by blowing air into a vacuum chamber through the fiber injection orifice. Nanofibers obtained at a laser power of 30 W and chamber pressure of 10 kPa exhibit an average diameter of 600 nm and a draw ratio of 110,000. Scanning electron microscopy, differential scanning calorimetry, and wide‐angle X‐ray diffraction analyses are employed to investigate the relationships among the chamber pressure, fiber morphology, and crystallization behavior. The nanofibers exhibit two melting temperatures (Tm): approximately 280°C and 320°C. The endothermic peak at Tm = 280°C is ascribable to lamellar crystals and that at Tm = 320°C to the highly complete crystals, since the polymer molecular chain is highly oriented. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40922.  相似文献   
88.
A weather resistant super‐hydrophobic coating that can offer good substrate adhesion and yet to be easily processed at large scale can be of practical use in emerging fields of self‐cleaning and anti‐icing paint, combing all these properties together remains challenging task. Here we describe a composite coating composed of a fluorinated epoxy resin emulsion with embedded in situ surface‐modified dual‐scale nano‐silica, which displayed durable super‐hydrophobicity and excellent adhesive strength. The as‐prepared coating possesses water contact angle of 158.6 ± 1°, sliding angle around 3.8 ± 0.2° which remain stable even under acidic/alkaline, heat/cool, and accelerated aging treatment. The results demonstrate that surface roughness had a micron‐ and nanometer scale distribution with increased particle loading beyond 40 wt %. Through quantitative comparison of surface Attenuated Total Reflection (ATR) with bulk FT‐IR transmission spectra, a gradient coating with surface enrichment of hydrophobic groups was determined. The air‐side fluorinated polysiloxane‐rich layer endows coating with weather‐resistance and ultra‐hydrophobicity while bottom epoxy resin layer enhances substrate adhesion. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40955.  相似文献   
89.
In this article, melamine (MA) and melamine phosphate (MP) have been intercalated into α‐type zirconium phosphate (α‐ZrP) interlayer spaces. The structure and thermal properties of the corresponding powders, MA‐ZrP and MP‐ZrP, were ascertained by X‐ray diffraction, Fourier transform infrared spectra, X‐ray photoelectron spectroscopy measurement, and thermogravimetric analyses (TGA). Furthermore, polypropylene (PP) and its intumescent flame retardant (IFR) composites containing the two organically modified α‐ZrP powders using maleic anhydride‐grafted PP (JPP) as compatibilizer were fabricated by melt blending. The results from TGA and cone calorimetry demonstrated that PP/JPP and PP/JPP/IFR composites containing MA‐ZrP and MP‐ZrP exhibited better thermal stability and burning behavior in comparison with their corresponding counterparts, PP/JPP and PP/JPP/IFR, respectively. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40254.  相似文献   
90.
Societal and industrial demands for lower environmental impact, cost effectiveness, and high‐performance goods and services are increasingly impacting the choice of technologies which are developed and deployed in consumer products. Like many other sectors, food packaging is moving to new technologies; the use of biopolymers is one of the most promising strategies toward an optimized use of traditional packaging materials (e.g., oil‐based plastics) without impairing the goal of extending shelf life. Among other food packaging materials, pullulan is attracting much attention due to its unique features. The goal of this review is to provide an overview of current and emerging applications of pullulan within the food packaging sector. In particular, the functional properties of interest for the food packaging industry will be discussed in light of the physicochemical attributes of this exopolysaccharide. Future challenges that may dictate the successful penetration of pullulan in the food packaging market are also outlined. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40539.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号