首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16328篇
  免费   1535篇
  国内免费   1334篇
电工技术   330篇
综合类   992篇
化学工业   4300篇
金属工艺   638篇
机械仪表   613篇
建筑科学   706篇
矿业工程   324篇
能源动力   763篇
轻工业   1677篇
水利工程   97篇
石油天然气   738篇
武器工业   74篇
无线电   1551篇
一般工业技术   3061篇
冶金工业   895篇
原子能技术   2146篇
自动化技术   292篇
  2024年   32篇
  2023年   344篇
  2022年   418篇
  2021年   542篇
  2020年   560篇
  2019年   474篇
  2018年   500篇
  2017年   617篇
  2016年   596篇
  2015年   627篇
  2014年   883篇
  2013年   1547篇
  2012年   1107篇
  2011年   1167篇
  2010年   850篇
  2009年   907篇
  2008年   698篇
  2007年   977篇
  2006年   922篇
  2005年   724篇
  2004年   642篇
  2003年   612篇
  2002年   525篇
  2001年   439篇
  2000年   357篇
  1999年   314篇
  1998年   259篇
  1997年   239篇
  1996年   178篇
  1995年   145篇
  1994年   155篇
  1993年   141篇
  1992年   107篇
  1991年   108篇
  1990年   66篇
  1989年   75篇
  1988年   55篇
  1987年   58篇
  1986年   47篇
  1985年   42篇
  1984年   25篇
  1983年   26篇
  1982年   25篇
  1981年   20篇
  1980年   4篇
  1979年   5篇
  1975年   4篇
  1974年   5篇
  1959年   12篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 718 毫秒
21.
Novel SiC-based nanomaterials, namely the nitrogen and aluminum co-doped SiC@SiO2 core-shell nanowires and nitrogen-doped SiO2/Al2O3 nanoparticles, have been fabricated through a facile thermal treatment process based on the chemical vapor deposition and vapor-liquid reaction. These nanomaterials show remarkable hydrophobicity with a water contact angle (CA) over 140°, which are aroused by the surface zigzag morphology of the nanostructures and the hydrocarbyl groups generated during the preparation process. Moreover the nanocomposites also exhibit relatively prominent microwave absorption (MA) properties in the frequency range of 2.0-18.0 GHz. The minimum reflection loss (RL) value as low as −23.68 dB can be observed at 14.16 GHz when the absorber thickness is 2.6 mm with a loading rate of 16.7 wt%. And the nanocomposites-based absorbent can achieve an effective absorption bandwidth (RL < −10 dB) of 4.48 GHz with the absorbent thickness of 2.5 mm. This enhanced microwave attenuation performance can be attributed to multiple polarizations and perfect impedance matching conditions, as well as multiple internal reflections. These marvelous properties make these N and Al co-doped SiC@SiO2 core-shell nanowires and N-doped SiO2/Al2O3 nanoparticles display extensive application potential as MA materials in harsh environment.  相似文献   
22.
The construction of nonlinear optical materials featuring asymmetric transmission of light is of great technological importance for various applications, including optical switching and optical power limiting. A significant challenge is the scalable fabrication of material candidates with good photochemical stability, high optical transmittance, and excellent optical limiting performance. Here, we present a nanocrystallization avenue for constructing hybrid optical limiting materials that exhibit ultrafast and robust optical limiting performance. The experimental results show that the controllable relaxation of a niobate glass may lead to the clustering of Nb-O units and contracting of the bandgap. It results in the notable improvement in nonlinear optical properties, including the enhanced saturation irradiance (380 GW/cm2), doubly increased nonlinear coefficient, and decreased limiting threshold (200 GW/cm2). Our results suggest a promising material that exhibits promising applications for protecting eyes and sensitive components from laser-induced damage.  相似文献   
23.
According to the definition of spectral integral,a new spectral characteristic parameter,with the name Reversed Spectral Absorption Integral(RSAI),is proposed and used to retrieve the chromium content based on the Partial Least Squares Regression(PLSR) model.The contrastive study with other traditional spectral characteristic parameters,including differential transformation,inverse transformation,absorption area,etc.indicates that(1) the first derivation of square root transformed model can predict the chromium content quantitatively in terms of spectral transformations.(2) the stability of the absorption area model is slightly poor,and the chromium content of samples can only be estimated roughly.(3) However,as to the inversed spectral absorption integral model,the adjustment determination coefficient(Ad-R2) of the modeling and verification is 0.73 and 0.77,while the Root Mean Squared Error(RMSE) is 2.63 mg/kg and 2.36 mg/kg respectively with Relative Percent Deviation(RPD) being 3.21,which shows that the RSAI model has excellent prediction ability.So,the inversed spectral absorption integral new model can improve the accuracy and stability used to retrieve the chromium content,which provides a new idea for monitoring the chromium contamination in soil.  相似文献   
24.
《Ceramics International》2020,46(10):15925-15934
Herein, reduced graphene oxide/cobalt-zinc ferrite (RGO/Co0.5Zn0.5Fe2O4) hybrid nanocomposites were fabricated by a facile hydrothermal strategy. Results revealed that the contents of RGO could affect the micromorphology, electromagnetic parameters and electromagnetic wave absorption properties. As the contents of RGO increased in the as-synthesized hybrid nanocomposites, the dispersibility of the particles was improved. Meanwhile, numerously ferromagnetic Co0.5Zn0.5Fe2O4 particles were evenly anchored on the wrinkled surfaces of flaky RGO. Besides, the obtained hybrid nanocomposites exhibited superior electromagnetic absorption in both X and Ku bands, which was achieved by adjusting the RGO contents and matching thicknesses. Significantly, when the content of RGO was 7.4 wt%, the binary nanocomposites showed the optimal reflection loss of -73.9 dB at a thickness of 2.2 mm and broadest effective absorption bandwidth of 6.0 GHz (12.0–18.0 GHz) at a thin thickness of merely 2.0 mm. The enhanced electromagnetic absorption performance was primarily attributed to the multiple polarization effects, improved conduction loss caused by electron migration, and magnetic loss derived from ferromagnetic Co0.5Zn0.5Fe2O4 nanoparticles. Our results could provide inspiration for manufacturing graphene-based hybrid nanocomposites as high-efficient electromagnetic wave absorbers.  相似文献   
25.
Enhancement of the dissolution rate of the poorly water-soluble hypoglycemic agent, gliclazide, by the aid of lyophilization was investigated. Mannitol, sodium lauryl sulfate (SLS) and polyvinyl pyrrolidone (PVP-k-30) were employed in different weight ratios (43%, 56% and 64% w/w, respectively) as water-soluble excipients in the formulation. Lyophilized systems were found to exhibit extremely higher in vitro dissolution rate compared to the unprocessed drug powder. Solid state characterization of the lyophilized systems using X-ray powder diffraction, Fourier transform infrared spectroscopy and differential scanning calorimetry techniques revealed that dissolution enhancement was attributable to transformation of gliclazide from the crystalline to an amorphous state in the solid dispersion formed during the lyophilization process. The gastrointestinal absorption and hypoglycemic effect of the lyophilized gliclazide/SLS system were investigated following oral administration to Albino rabbits. Cmax and area under the plasma concentration–time curve of gliclazide (AUC0–12) after administration of the lyophilized formulations were significantly higher than those obtained after administration of the unprocessed gliclazide.  相似文献   
26.
Passive permeability is a key property in drug disposition and delivery. It is critical for gastrointestinal absorption, brain penetration, renal reabsorption, defining clearance mechanisms and drug-drug interactions. Passive diffusion rate is translatable across tissues and animal species, while the extent of absorption is dependent on drug properties, as well as in vivo physiology/pathophysiology. Design principles have been developed to guide medicinal chemistry to enhance absorption, which combine the balance of aqueous solubility, permeability and the sometimes unfavorable compound characteristic demanded by the target. Permeability assays have been implemented that enable rapid development of structure-permeability relationships for absorption improvement. Future advances in assay development to reduce nonspecific binding and improve mass balance will enable more accurately measurement of passive permeability. Design principles that integrate potency, selectivity, passive permeability and other ADMET properties facilitate rapid advancement of successful drug candidates to patients.  相似文献   
27.
研究了高密度聚乙烯/铅硼复合材料的屏蔽性能和力学性能,通过屏蔽仿真比较了密度及碳化硼(B4C)含量对屏蔽性能的影响,通过试验比较了B4C含量对屏蔽性能、弯曲强度及冲击强度的影响。仿真结果表明,随聚乙烯/铅硼复合材料密度升高,快中子屏蔽性能下降,热中子屏蔽性能和γ屏蔽性能提高;保持聚乙烯/铅硼复合材料密度不变,随B4C含量的提高,中子屏蔽性能提高而γ屏蔽性能下降;实验数据表明,随B4C含量的升高,高密度聚乙烯/铅硼材料的快中子屏蔽性能、热中子屏蔽性能升高,γ屏蔽系数下降,冲击强度和弯曲强度下降明显,屏蔽性能测试结果和仿真结果规律性相符;综合仿真结果和实验数据表明,含B4C 2 %左右的高密度聚乙烯/铅硼复合材料同时具有较好的屏蔽性能和力学性能。  相似文献   
28.
High-entropy alloys (HEAs), as a new class of metallic materials, have received more and more attention due to its excellent mechanical properties. In this study, the hydrogen absorption properties, such as hydrogen absorption capacity, thermodynamics, kinetics and cyclic properties, as well as the hydride structure of a newly designed TiZrNbTa HEA were investigated. The results showed that multiple hydrides including ε-ZrH2, ε-TiH2 and β-(Nb,Ta)H were found in the TiZrNbTa HEA after hydrogenation. With the increase of temperature from 293 K to 493 K, the maximum hydrogen absorption capacity decreased from 1.67 wt% to 1.25 wt% and the plateau pressure related with β-(Nb,Ta)H hydrides increased from 1.6 kPa to 14.8 kPa. The formation enthalpy of β-(Nb,Ta)H hydride was determined to be −6.4 kJ/mol, which was less stable than that of NbH and TaH hydrides. The results also showed that the TiZrNbTa HEA exhibited a rapid hydrogen absorption kinetic even at the room temperature with a short incubation time, and the hydrogen absorption mechanism was determined to be the nucleation and growth mechanism. Moreover, the hydrogen absorption capacity at 293 K decreased slowly with the cycle numbers, and remained 86% capacity after 10 cycles. Cracking occurred after hydrogen absorption and became worse with cycles.  相似文献   
29.
In this work, we report the tuning effect of the Si substitution on the magnetic and high frequency electromagnetic properties of R2Fe17 compounds and their paraffin composites. It is found that the introduction of Si can remarkably improve the magnetic and electromagnetic properties of the R2Fe17 compounds, making the R2Fe17–xSix-paraffin composites excellent microwave absorption materials (MAMs). By introducing the Si element, their saturation magnetizations decrease slightly, while much higher Curie temperatures are obtained. Furthermore, better impedance match is reached due to the decrease of the high-frequency permittivity ε′ by about 40%–50%, which finally enhances the performance of the microwave absorption. The peak frequency (fRL) of the reflection loss (RL) curve moves toward high frequency domain and the qualified bandwidth (QB, RL ≤ ?10 dB) increases remarkably. The maximum QB of 3.3 GHz (12.0–15.3 GHz) is obtained for the Sm1.5Y0.5Fe15Si2-paraffin composite (d = 1.0 mm) and the maximum RL of ?53.6 dB is achieved for Nd2Fe15Si2-paraffin composite (d = 2.2 mm), both surpassing most of the reported MAMs. Additionally, a distinguished dielectric microwave absorption peak is observed, which further increases the QB in these composites.  相似文献   
30.
李子辉  蒋晶  金章勇  蔡泊志  曹永俊  李倩 《化工学报》2020,71(12):5842-5853
以聚己内酯(PCL)为基体,添加不同含量聚乳酸(PLA)熔融共混制备具有不同分散相形态的PCL/PLA共混物,利用超临界二氧化碳(scCO2)微孔发泡工艺制备不同发泡倍率和开孔率的PCL/PLA多孔材料用于吸油应用。针对边长3 mm正方体样品溶解度实验发现100 min后CO2在PCL中已达到饱和吸附状态。PLA分散相含量的增加显著增大了PCL/PLA共混物泡孔密度,并使共混泡孔尺寸减小且分布更加均匀;发泡温度升高6℃,泡孔尺寸增大50%,发泡倍率增大38%,开孔率减小了20%。PCL/PLA开孔材料具有明显的亲油疏水性,发泡倍率越高,疏水性越好;针对花生油和硅油的吸油实验发现材料吸油率与发泡倍率和开孔率整体呈正比,实际吸油量高于理论计算值,10次循环吸油测试后样品吸油率仅降低8.5%,材料吸油量与油品特性黏度关系不大。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号