首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44769篇
  免费   4691篇
  国内免费   2794篇
电工技术   980篇
综合类   2737篇
化学工业   9790篇
金属工艺   4598篇
机械仪表   1844篇
建筑科学   3860篇
矿业工程   1020篇
能源动力   1515篇
轻工业   1740篇
水利工程   570篇
石油天然气   469篇
武器工业   538篇
无线电   4255篇
一般工业技术   15072篇
冶金工业   2133篇
原子能技术   410篇
自动化技术   723篇
  2024年   124篇
  2023年   954篇
  2022年   1018篇
  2021年   1548篇
  2020年   1780篇
  2019年   1556篇
  2018年   1408篇
  2017年   1585篇
  2016年   1577篇
  2015年   1572篇
  2014年   2358篇
  2013年   2554篇
  2012年   2838篇
  2011年   3612篇
  2010年   2611篇
  2009年   2826篇
  2008年   2580篇
  2007年   3000篇
  2006年   2710篇
  2005年   2466篇
  2004年   1999篇
  2003年   1817篇
  2002年   1495篇
  2001年   1121篇
  2000年   1040篇
  1999年   742篇
  1998年   650篇
  1997年   473篇
  1996年   409篇
  1995年   314篇
  1994年   303篇
  1993年   234篇
  1992年   175篇
  1991年   170篇
  1990年   151篇
  1989年   132篇
  1988年   70篇
  1987年   46篇
  1986年   40篇
  1985年   31篇
  1984年   47篇
  1983年   30篇
  1982年   32篇
  1981年   9篇
  1980年   15篇
  1979年   5篇
  1976年   3篇
  1959年   2篇
  1955年   4篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
To improve the electrochemical properties of rare-earth–Mg–Ni-based hydrogen storage alloys, the effects of stoichiometry and Cu-substitution on the phase structure and thermodynamic properties of the ...  相似文献   
52.
Thermogravimetric analysis of a coccolith-containing biogenic broth showed a three-step degradation process. According to this system behavior, the biogenic broth was heated to specific temperatures and characterized in terms of its morphology, surface chemistry, and crystallinity. The elemental and organic composition of the treated samples was also evaluated and compared to the reference material. The presented results were acquired in an effort to exploit pretreatment scenarios for such a biogenic system that would improve and support a separation process.  相似文献   
53.
This work aims at developing a new composite material based on nanosized semiconducting CuInS2 (CIS) particles combined with silicon nanowires grown on a silicon substrate (SiNWs/Si) for photoelectrochemical (PEC)-splitting of water. The CIS particles were prepared via a colloidal method using N-methylimidazole (NMI) as the solvent and an annealing treatment. The SiNWs were obtained by chemical etching of silicon (100) substrates assisted by a metal. The CIS/SiNWs/Si composite material was obtained by deposition of an aliquot of a suspension of CIS particles onto the SiNWs/Si substrate, using spin coating followed by a drying step. The XRD pattern demonstrated that CuInS2 grows in the tetragonal/chalcopyrite phase, while SiNWs/Si presents a cubic structure. The SEM images show semi-spherical particles (~10 nm) distributed on the surface of silicon nanowires (~10 μm). The EIS measurements reveal n-type conductivity for CIS, SiNWs/Si and CIS/SiNWs/Si materials, which could favour the oxidation reaction of water molecules.  相似文献   
54.
《Ceramics International》2020,46(3):2836-2844
This research investigates the alterations in microstructure, mechanical properties, and corrosion behavior of binary magnesium-hydroxyapatite bionanocomposites with 2, 5, and 10 wt%HA. By mixing Mg and HA powders with different percentages of HA contents, a combined method of cyclic extrusion compression (CEC), equal channel angular pressing (ECAP) and conventional extrusion were employed to consolidate the mixture of powders. All composites were examined. The results indicate that the addition of hydroxyapatite to magnesium improves the mechanical properties, but these properties are deteriorated with the hydroxyapatite content of over 5 wt%. The corrosion behavior of the composites was examined by immersion test, mass loss and polarization tests in Hank’s solution. The results indicate that Mg-5HA exhibits the best corrosion resistance and the corrosion rate increases when the HA content rises to more than 5 wt%. In addition, the specimen produced through the proposed method in this work indicates better corrosion resistance in comparison with cast and extruded pure Mg.  相似文献   
55.
3D laser ultramicroscopy (3D LUM) is intended specially for determining the concentration and size distribution of submicron inclusions in the bulk samples of high-purity materials for visible and IR fiber optics. In this work the 3D LUM technique is shown to be able to identify the nature of individual inclusions detected. The measurement of the light scattered by an inclusion at a varied probe beam wavelength and polarization and at a varied scattered light collection angle makes it possible to determine the inclusion refractive index. The 3D LUM possibilities are illustrated by the example of studying the inclusion nature in the As2S3 glass samples prepared by the direct synthesis from elements in a quartz container at elevated temperatures.  相似文献   
56.
57.
The complex tissue-specific physiology that is orchestrated from the nano- to the macroscale, in conjugation with the dynamic biophysical/biochemical stimuli underlying biological processes, has inspired the design of sophisticated hydrogels and nanoparticle systems exhibiting stimuli-responsive features. Recently, hydrogels and nanoparticles have been combined in advanced nanocomposite hybrid platforms expanding their range of biomedical applications. The ease and flexibility of attaining modular nanocomposite hydrogel constructs by selecting different classes of nanomaterials/hydrogels, or tuning nanoparticle-hydrogel physicochemical interactions widely expands the range of attainable properties to levels beyond those of traditional platforms. This review showcases the intrinsic ability of hybrid constructs to react to external or internal/physiological stimuli in the scope of developing sophisticated and intelligent systems with application-oriented features. Moreover, nanoparticle-hydrogel platforms are overviewed in the context of encoding stimuli-responsive cascades that recapitulate signaling interplays present in native biosystems. Collectively, recent breakthroughs in the design of stimuli-responsive nanocomposite hydrogels improve their potential for operating as advanced systems in different biomedical applications that benefit from tailored single or multi-responsiveness.  相似文献   
58.
Biological environments use ions in charge transport for information transmission. The properties of mixed electronic and ionic conductivity in organic materials make them ideal candidates to transduce physiological information into electronically processable signals. A device proven to be highly successful in measuring such information is the organic electrochemical transistor (OECT). Previous electrophysiological measurements performed using OECTs show superior signal-to-noise ratios than electrodes at low frequencies. Subsequent development has significantly improved critical performance parameters such as transconductance and response time. Here, interdigitated-electrode OECTs are fabricated on flexible substrates, with one such state-of-the-art device achieving a peak transconductance of 139 mS with a 138 µs response time. The devices are implemented into an array with interconnects suitable for micro-electrocorticographic application and eight architecture variations are compared. The two best-performing arrays are subject to the full electrophysiological spectrum using prerecorded signals. With frequency filtering, kHz-scale frequencies with 10 µV-scale voltages are resolved. This is supported by a novel quantification of the noise, which compares the gate voltage input and drain current output. These results demonstrate that high-performance OECTs can resolve the full electrophysiological spectrum and suggest that superior signal-to-noise ratios could be achieved in high frequency measurements of multiunit activity.  相似文献   
59.
In this study, yttrium iron garnet co-doped with Zn and Zr atoms with a chemical formula Y3ZnxZrxFe(5−2x)O12 (x = 0.0-0.3) has been successfully prepared by the solid-state reaction method. The effects of doping concentration on the microstructure, crystal structure, magnetic properties, and dielectric properties of Y3ZnxZrxFe(5−2x)O12 were investigated. The microstructure analysis indicates that co-doping of YIG with Zn and Zr can effectively reduce the grain size of the ceramic. The crystal structure results reveal that the doping concentration of Zn–Zr has substantial influence on the lattice parameters of YIG, such as, increases the lattice constant, crystal cell size, and interplanar spacing. However, the second phase of ZrO2 appears once ≥ 0.15. Additionally, the dielectric properties of YIG ferrite can be regulated using this Zn–Zr co-doping method. Zn–Zr co-doping can improve the dielectric stability and reduce the dielectric loss at high temperature. The magnetization measurement shows that the saturation magnetization is stabilized at x < 0.15, and the magnetic loss is decreased with the increase in the doping concentration. Overall, the findings show that the ceramic with x = 0.1 exhibits better properties included high saturation magnetization (24.607 emu/g), low magnetic loss (0.0025 @ 1 MHz), and relatively low dielectric loss (496 @ 400°C).  相似文献   
60.
Three kinds of ethylene-octene copolymers (POE) were melt-blended with high-density polyethylene (PE-HD) in different proportions. Detailed characterizations were conducted to analyze their structural differences of POE and its effects in toughening PE-HD. The higher molecular weight POE can improve the toughness of PE-HD. 60:40 PE-HD/POE is elongated to break up to 700% while impact strength is 84.7 kJ/m2 at −30°C, which is 21-fold of PE-HD. In the brittle to ductile transition (BDT) during impact, the fracture mechanism changes from the crazing mode to the shear yield-plastic deformation mode. The BDT temperature decreases as the POE molecular weight and its content increase. The interface strength in tension is estimated to access their effects. The Boltzmann-type models were successfully extended to describe the typical S-shaped curves in BDT of notched impact strength vs POE content or temperature. The supplementary decay model is suggested for the attenuation in toughening. Transition map in impact is proposed to select the use range of composition (c ) and temperature (T ) for high toughness. The curves are converted into 3D graph of T -c -impact strength for illustrating their coupling-separate effects, and further into the contour map of impact strength in T -c space for finding their partial equivalence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号