首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   384篇
  免费   29篇
  国内免费   33篇
电工技术   3篇
综合类   32篇
化学工业   123篇
金属工艺   57篇
机械仪表   6篇
建筑科学   9篇
矿业工程   51篇
能源动力   3篇
轻工业   4篇
石油天然气   1篇
武器工业   1篇
无线电   12篇
一般工业技术   86篇
冶金工业   54篇
原子能技术   2篇
自动化技术   2篇
  2024年   1篇
  2023年   5篇
  2022年   11篇
  2021年   5篇
  2020年   15篇
  2019年   6篇
  2018年   18篇
  2017年   14篇
  2016年   14篇
  2015年   15篇
  2014年   22篇
  2013年   15篇
  2012年   19篇
  2011年   26篇
  2010年   19篇
  2009年   18篇
  2008年   15篇
  2007年   22篇
  2006年   24篇
  2005年   22篇
  2004年   26篇
  2003年   22篇
  2002年   14篇
  2001年   19篇
  2000年   12篇
  1999年   9篇
  1998年   4篇
  1997年   5篇
  1996年   5篇
  1995年   2篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   6篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1979年   2篇
  1975年   2篇
排序方式: 共有446条查询结果,搜索用时 0 毫秒
441.
分析了含磷金红石矿的性质并对其作了试验研究,为类似矿山提供了经验。  相似文献   
442.
Dielectric spectroscopy was carried out for reduced and stoichiometric La0.0025Nb0.0025Ti0.995O2 ceramics synthesized by sintering in different atmospheres. A giant permittivity (~1 × 104) was obtained at a frequency of 100 MHz and temperature range from 170 to 350 K. Three dielectric relaxation mechanisms were observed within the temperature range of 10-300 K via dielectric spectroscopy. A low temperature dipole relaxation peak (in the temperature range of 10-30 K) in the spectra was identified to be associated with the giant permittivity specifically measured at 100 MHz. The origin of such giant permittivity was attributed to dipole orientation polarization. Hopping polaron and interfacial effect contributed to giant permittivity. After annealing treatment, all the relaxation contributions were weakened. Low dielectric loss was attributed to high resistance of grain and grain boundaries. Annealing in ambient conditions led to decreased relaxation times which gives the signature of decreased concentration of oxygen vacancies and Ti3+. Dipoles which were related to oxygen vacancies and Ti3+, resulted in giant permittivity up to 100 MHz.  相似文献   
443.
A single-crystal specimen of rutile (titania) was flashed repetitively, while increasing the electric field after each cycle. As expected, the flash onset temperature continued to drop modestly at higher fields. However, when the field was increased from 400 to 450 V cm–1, the flashed onset fell dramatically down to room temperature. We have investigated the electrical and optical properties of this room temperature flashed specimen (called SZ). The specimen was electronically conducting. Optical absorption spectroscopy revealed a narrow band of new energy levels that were generated just below the conduction band. The gap between the conduction band and this flash-induced energy level agreed with the peak in the electroluminescence spectrum. Optical second harmonic generation (SHG) is reported. The flash-on condition significantly lowered the SHG, which rebounded when the flash was turned off. This result suggests that the structure becomes more centrosymmetric in the state of flash, which may represent a disordered state of defects. The possibility of studying flash behavior at room temperature, without a furnace (as in SZ type specimens), opens a considerable simplification for in-situ characterization of flash behavior. For example, a possible relationship between memristor physics and the flash phenomenon can be studied.  相似文献   
444.
Surface functionalization of titanium metal is very attractive for bio- and environmental applications. This is because titanium metal is very stable and has a good biocompatibility. In this case, surface roughness and crystalline structure are important factors for obtaining effective characteristics. Titanium metal is usually covered with a surface passive film of thermodynamically stable rutile-TiO2 that grows as the heat treatment temperature in air increases. On the other hand, to obtain an anatase-TiO2 surface layer on titanium metal, we must employ specific treatments such as our previous method, which uses a silica-coexisting heat-treatment process. In this paper, the relationship between the fine structure formed on the titanium metal and the surface hydrophilic property was clarified, and the potential for the bio-application was discussed. The formed anatase-TiO2 coexisting with silica exhibited improved biocompatibility with good apatite formation.  相似文献   
445.
The inferior shuttle effect of intermediate lithium polysulfides and the sluggish kinetics of sulfur redox reaction are two serious puzzles for the application of lithium–sulfur batteries. Herein, energy band alignment is combined with oxygen vacancies engineering to obtain TiO2 anatase/rutile homojunction (A/R-TiO2) with effective immobilization and high-efficiency catalytic conversion of polysulfides. Theoretical calculations and experiments reveal that the near perfect energy band alignment in A/R-TiO2 is conducive to fluent charge transfer and high catalytic activity, while the rich oxygen vacancies are engineered to provide abundant active sites for anchoring and accelerating conversion of soluble polysulfides. As a result, a battery with A/R-TiO2-modified separator delivers a marked sulfur utilization (1210 mAh g−1 at 0.1 C and 689 mAh g−1 at 1 C, 3.75 mg cm−2) and a high capacity retention of 63% over 300 cycles at 0.5 C (3.25 mg cm−2). More importantly, the A/R-TiO2-modified separator endows the pouch cell with a high capacity of 128.5 mAh at 0.05 C with a lean electrolyte/sulfur ratio for practical application (S loading: 4 mg cm−2).  相似文献   
446.
A series of textured (Nb0.5La0.5)xTi1-xO2 (x = 0, 0.0025, 0.005, 0.01) ceramics were sintered in a nitrogen environment after magnetic slip casting (12 T). Component x ranges from 0.0025 to 0.01 while the degree of orientation increases from 0.49 to 0.88. (Nb0.5La0.5)0.01Ti0.99O2 ceramics in the parallel magnetic field's plane have a high permittivity ɛr ≈ 1.6 × 104 and the ultralow dielectric loss tanδ ≈ 0.0038 at 104 Hz. The temperature coefficient value of η ≤ ± 7.1% between 218–473 K, fulfilling the X9R requirements. The giant permittivity properties of textured ceramics are mainly derived from internal barrier layer capacitor impacts, electron hopping, and electron-pinned defect-dipoles polarization. The microstructure evolution of sintered ceramics was modified by texturing in a magnetic field, leading to higher activation energies of dielectric relaxations and resistance of grain boundaries and grains. This excellent performance is expected to show great potential in electronic devices' miniaturization and high-density energy storage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号