首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   217篇
  免费   41篇
  国内免费   14篇
电工技术   3篇
综合类   4篇
化学工业   17篇
金属工艺   3篇
机械仪表   23篇
轻工业   3篇
无线电   105篇
一般工业技术   105篇
自动化技术   9篇
  2023年   8篇
  2022年   1篇
  2021年   6篇
  2020年   10篇
  2019年   7篇
  2018年   2篇
  2017年   18篇
  2016年   10篇
  2015年   4篇
  2014年   14篇
  2013年   26篇
  2012年   12篇
  2011年   9篇
  2010年   8篇
  2009年   14篇
  2008年   10篇
  2007年   9篇
  2006年   12篇
  2005年   16篇
  2004年   13篇
  2003年   17篇
  2002年   5篇
  2001年   10篇
  2000年   4篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   6篇
  1995年   5篇
  1994年   3篇
  1993年   4篇
  1983年   1篇
排序方式: 共有272条查询结果,搜索用时 15 毫秒
41.
Transient electronics refers to an emerging class of advanced technology, defined by an ability to chemically or physically dissolve, disintegrate, and degrade in actively or passively controlled fashions to leave environmentally and physiologically harmless by-products in environments, particularly in bio-fluids or aqueous solutions. The unusual properties that are opposite to operational modes in conventional electronics for a nearly infinite time frame offer unprecedented opportunities in research areas of eco-friendly electronics, temporary biomedical implants, data-secure hardware systems, and others. This review highlights the developments of transient electronics, including materials, manufacturing strategies, electronic components, and transient kinetics, along with various potential applications.  相似文献   
42.
Nanotechnology has provided tools for next generation biomedical devices which rely on nanostructure interfaces with living cells. In vitro biomimetic structures have enabled observation of cell response to various mechanical and chemical cues, and there is a growing interest in isolating and harnessing the specific cues that 3D microenvironments can provide without the requirement for such culture and the experimental drawbacks associated with it. Here, a randomly oriented gold coated Si nanowire substrate with patterned hydrophobic–hydrophilic areas for the differentiation of isogenic breast cancer cells of varying metastatic potential is reported. When considering synthetic surfaces for the study of cell-nanotopography interfaces, randomly oriented nanowires more closely resemble the isotropic architecture of a natural extracellular matrix. In the study reported here, the authors show that primary cancer cells preferably attach to the hydrophilic region of randomly oriented nanowire substrate while secondary cancer cells do not adhere. Using machine learning analysis of fluorescence images, cells are found to spread and elongate on the nanowire substrates as compared to a flat substrate, where they mostly remain round. Such platforms can not only be used for developing bioassays but also as stepping stones for tissue printing technologies where cells can be selectively patterned at desired locations.  相似文献   
43.
The intrinsic hydrophilicity of conventional dressings cannot achieve effective management of excessive biofluid around the wound bed, which inevitably causes infection and hinders wound healing. In addition, present dressings such as medical gauze or band aids have a limited stretching capability, which does not comply well with the skin deformation during muscle movement, thus impacting patient comfort. Herein, a Janus wound dressing is reported by assembling an external hydrophobic (HP) adhesive tape, a filter paper, and a polydimethylsiloxane (PDMS) Janus film. The PDMS Janus film as the primary dressing can unidirectionally remove biofluid away from the wound bed. The mechanism of the unidirectional biofluid transport is investigated, demonstrating that the stretching or bending of the Janus dressing is beneficial for unidirectional biofluid draining. It indicates that the Janus PDMS film has potential for practical applications on stretched or bended skin surface. In addition, in order to prevent bacterial infection, amoxicillin powder is uniformly encapsulated on the HP layer of Janus film, resulting in faster wound healing. This study is valuable for designing and fabricating next-generation dressings with high performance for clinical applications.  相似文献   
44.
PCR生物芯片微加工技术的研究   总被引:4,自引:1,他引:4  
聚合酶链式反应(PCR)在生命科学研究及诸多相关领域已经得到了广泛应用。PCR生物芯片是利用微加工技术制作的能够实现PCR扩增反应的微装置。文中给出了基于MEMS技术的PCR生物芯片的微加工技术及加工方法,特别对集成在芯片上的加热器及温度传感器的微加工方法进行了重点介绍,并对它们的特性进行了分析比较。最后预测了PCR生物芯片微加工技术的发展方向及要克服的主要难题。  相似文献   
45.
46.
We have discovered a micro/nanopatterning technique based on the patterning of a PDMS membrane/film, which involves bonding a PDMS structure/stamp (that has the desired patterns) to a PDMS film. The technique, which we call "bond-detach lithography", was demonstrated (in conjunction with other microfabrication techniques) by transferring several micro- and nanoscale patterns onto a variety of substrates. Bond-detach lithography is a parallel process technique in which a master mold can be used many times, and is particularly simple and inexpensive.  相似文献   
47.
48.
微/纳米级微电子机械系统制造新技术   总被引:1,自引:0,他引:1  
论述了微电子机械制造中的主要技术,包括表面微细加工、体微细加工、光刻-电铸-注塑(LIGA)、硅直接键合技术等,并讨论了这些新技术在MEMS产品中的应用前景.  相似文献   
49.
 通过皮肤输送药物最大的障碍是皮肤最外层的角质层.传统的静脉注射用针只有刺透皮肤深入到深层组织内部,才能有效地输送药物,这容易引起感染和疼痛,给患者造成很大的不适.介绍了一种采用硅微加工技术制作的微针,它长度适中,既能穿透皮肤的角质层,又刺激不到深层组织的神经,实现无痛注射的目的.其加工工艺是采用硅的HNA(硝酸+氢氟酸+乙酸)腐蚀系统,是一种硅的各项同性的湿法腐蚀方法.  相似文献   
50.
Mimicking natural tissue structure is crucial for engineered tissues with intended applications ranging from regenerative medicine to biorobotics. Native tissues are highly organized at the microscale, thus making these natural characteristics an integral part of creating effective biomimetic tissue structures. There exists a growing appreciation that the incorporation of similar highly organized microscale structures in tissue engineering may yield a remedy for problems ranging from vascularization to cell function control/determination. In this review, we highlight the recent progress in the field of microscale tissue engineering and discuss the use of various biomaterials for generating engineered tissue structures with microscale features. In particular, we will discuss the use of microscale approaches to engineer the architecture of scaffolds, generate artificial vasculature, and control cellular orientation and differentiation. In addition, the emergence of microfabricated tissue units and the modular assembly to emulate hierarchical tissues will be discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号