首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   46739篇
  免费   3474篇
  国内免费   5446篇
电工技术   2446篇
技术理论   67篇
综合类   5931篇
化学工业   6238篇
金属工艺   1052篇
机械仪表   2725篇
建筑科学   16104篇
矿业工程   1973篇
能源动力   1337篇
轻工业   866篇
水利工程   2289篇
石油天然气   1178篇
武器工业   773篇
无线电   2033篇
一般工业技术   4350篇
冶金工业   1198篇
原子能技术   163篇
自动化技术   4936篇
  2024年   116篇
  2023年   667篇
  2022年   866篇
  2021年   1316篇
  2020年   1355篇
  2019年   1014篇
  2018年   954篇
  2017年   1189篇
  2016年   1471篇
  2015年   1563篇
  2014年   4012篇
  2013年   2804篇
  2012年   3422篇
  2011年   3626篇
  2010年   2999篇
  2009年   3161篇
  2008年   3142篇
  2007年   3776篇
  2006年   3400篇
  2005年   3052篇
  2004年   2656篇
  2003年   2026篇
  2002年   1467篇
  2001年   1138篇
  2000年   972篇
  1999年   759篇
  1998年   523篇
  1997年   449篇
  1996年   374篇
  1995年   318篇
  1994年   246篇
  1993年   185篇
  1992年   159篇
  1991年   86篇
  1990年   67篇
  1989年   58篇
  1988年   50篇
  1987年   32篇
  1986年   17篇
  1985年   23篇
  1984年   30篇
  1983年   19篇
  1982年   16篇
  1981年   10篇
  1980年   14篇
  1979年   8篇
  1961年   4篇
  1958年   4篇
  1957年   6篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Two InP‐based III–V semiconductor etching recipes are presented for fabrication of on‐chip laser photonic devices. Using inductively coupled plasma system with a methane free gas chemistry of chlorine and nitrogen at a high substrate temperature of 250 °C, high aspect ratio, anisotropic InP‐based nano‐structures are etched. Scanning electron microscopy images show vertical sidewall profile of 90° ± 3°, with aspect ratio as high as 10. Atomic Force microscopy measures a smooth sidewall roughness root‐mean‐square of 2.60 nm over a 3 × 3 μm scan area. The smallest feature size etched in this work is a nano‐ring with inner diameter of 240 nm. The etching recipe and critical factors such as chamber pressure and the carrier plate effect are discussed. The second recipe is of low temperature (?10 °C) using Cl2 and BCl3 chemistry. This recipe is useful for etching large areas of III–V to reveal the underlying substrate. The availability of these two recipes has created a flexible III–V etching platform for fabrication of on‐chip laser photonic devices. As an application example, anisotropic InP‐based waveguides of 3 μm width are fabricated using the Cl2 and N2 etch recipe and waveguide loss of 4.5 dB mm?1 is obtained.
  相似文献   
992.
Human factors practitioners (HFPs) play many different roles in the design, creation, operation and maintenance of engineered systems. Less well known are the methods which are aimed at helping with the early stages of design, which are more systems-oriented and often involve questions of the concept of operation in which the engineered system will be fielded. Emerging from the field of cognitive engineering, these methods, including simulation, cognitive work analysis, cognitive task analyses and hierarchical task analysis, will be important as autonomous systems become increasingly capable. Even the most capable systems will continue to interact with humans, and it is at these interfaces between humans and engineered systems that HFP will continue to be needed. This paper describes recent work to leverage these methods to inform concepts of operation in aviation and space, machine learning algorithms and goal-oriented human–machine collaboration.  相似文献   
993.
Growth factors are potent stimuli for regulating cell function in tissue engineering strategies, but spatially patterning their presentation in 3D in a facile manner using a single material is challenging. Micropatterning is an attractive tool to modulate the cellular microenvironment with various biochemical and physical cues and study their effects on stem cell behaviors. Implementing heparin's ability to immobilize growth factors, dual‐crosslinkable alginate hydrogels are micropatterned in 3D with photocrosslinkable heparin substrates with various geometries and micropattern sizes, and their capability to establish 3D micropatterns of growth factors within the hydrogels is confirmed. This 3D micropatterning method could be applied to various heparin binding growth factors, such as fibroblast growth factor‐2, vascular endothelial growth factor, transforming growth factor‐betas and bone morphogenetic proteins while retaining the hydrogel's natural degradability and cytocompability. Stem cells encapsulated within these micropatterned hydrogels have exhibited spatially localized growth and differentiation responses corresponding to various growth factor patterns, demonstrating the versatility of the approach in controlling stem cell behavior for tissue engineering and regenerative medicine applications.  相似文献   
994.
An Ar atmospheric treatment is rationally used to etch and activate hematite nanoflakes (NFs) as photoanodes toward enhanced photoelectrochemical water oxidation. The formation of a highly ordered hematite nanorods (NRs) array containing a high density of oxygen vacancy is successfully prepared through in situ reduction of NFs in Ar atmosphere. Furthermore, a hematite (104) plane and an iron suboxide layer at the absorber/back‐contact interface are formed. The material defects produced by a thermal oxidation method can be critical for the morphology transformation from 2D NFs to 1D NRs. The resulting hematite NR photoanodes show high efficiency toward solar water splitting with improved light harvesting capabilities, leading to an enhanced photoresponse due to the artificially formed oxygen vacancies.  相似文献   
995.
Surface functionality is an essential component for processing and application of metal–organic frameworks (MOFs). A simple and cost‐effective strategy for DNA‐mediated surface engineering of zirconium‐based nanoscale MOFs (NMOFs) is presented, capable of endowing them with specific molecular recognition properties and thus expanding their potential for applications in nanotechnology and biotechnology. It is shown that efficient immobilization of functional DNA on NMOFs can be achieved via surface coordination chemistry. With this strategy, it is demonstrated that such porphyrin‐based NMOFs can be modified with a DNA aptamer for targeting specific cancer cells. Furthermore, the DNA–NMOFs can facilitate the delivery of therapeutic DNA (e.g., CpG) into cells for efficient recognition of endosomal Toll‐like receptor 9 and subsequent enhanced immunostimulatory activity in vitro and in vivo. No apparent toxicity is observed with systemic delivery of the DNA–NMOFs in vivo. Overall, these results suggest that the strategy allows for surface functionalization of MOFs with different functional DNAs, extending the use of these materials to diverse applications in biosensor, bioimaging, and nanomedicine.  相似文献   
996.
Perovskite solar cells with cost‐effectiveness, high power conversion efficiency, and improved stability are promising solutions to the energy crisis and environmental pollution. However, a wide‐bandgap inorganic–semiconductor electron‐transporting layer such as TiO2 can harvest ultraviolet light to photodegrade perovskite halides, and the high cost of a state‐of‐the‐art hole‐transporting layer is an economic burden for commercialization. Here, the building of a simplified cesium lead bromide (CsPbBr3) perovskite solar cell with fluorine‐doped tin oxide (FTO)/CsPbBr3/carbon architecture by a multistep solution‐processed deposition technology is demonstrated, achieving an efficiency as high as 4.1% and improved stability upon interfacial modification by graphene quantum dots and CsPbBrI2 quantum dots. This work provides new opportunities of building next‐generation solar cells with significantly simplified processes and reduced production costs.  相似文献   
997.
An Ar atmospheric treatment is rationally used to etch and activate hematite nanoflakes (NFs) as photoanodes toward enhanced photoelectrochemical water oxidation. The formation of a highly ordered hematite nanorods (NRs) array containing a high density of oxygen vacancy is successfully prepared through in situ reduction of NFs in Ar atmosphere. Furthermore, a hematite (104) plane and an iron suboxide layer at the absorber/back‐contact interface are formed. The material defects produced by a thermal oxidation method can be critical for the morphology transformation from 2D NFs to 1D NRs. The resulting hematite NR photoanodes show high efficiency toward solar water splitting with improved light harvesting capabilities, leading to an enhanced photoresponse due to the artificially formed oxygen vacancies.  相似文献   
998.
The realization of large‐scale solar hydrogen (H2) production relies on the development of high‐performance and low‐cost photocatalysts driven by sunlight. Recently, cocatalysts have demonstrated immense potential in enhancing the activity and stability of photocatalysts. Hence, the rational design of highly active and inexpensive cocatalysts is of great significance. Here, a facile method is reported to synthesize Ni@C core–shell nanoparticles as a highly active cocatalyst. After merging Ni@C cocatalyst with CdS nanorod (NR), a tremendously enhanced visible‐light photocatalytic H2‐production performance of 76.1 mmol g?1 h?1 is achieved, accompanied with an outstanding quantum efficiency of 31.2% at 420 nm. The state‐of‐art characterizations (e.g., synchrotron‐based X‐ray absorption near edge structure) and theoretical calculations strongly support the presence of pronounced nanoconfinement effect in Ni@C core–shell nanoparticles, which leads to controlled Ni core size, intimate interfacial contact and rapid charge transfer, optimized electronic structure, and protection against chemical corrosion. Hence, the combination of nanoconfined Ni@C with CdS nanorod leads to significantly improved photocatalytic activity and stability. This work not only for the first time demonstrates the great potential of using highly active and inexpensive Ni@C core–shell structure to replace expensive Pt in photocatalysis but also opens new avenues for synthesizing cocatalyst/photocatalyst hybridized systems with excellent performance by introducing nanoconfinement effect.  相似文献   
999.
1000.
研究Chetaev型非完整系统Nielsen方程Lie对称性导致的一种守恒量,给出无限小群变换下Chetaev型非完整系统Nielsen方程Lie对称性的确定方程,得到Chetaev型非完整系统Nielsen方程Lie对称性直接导致的一种守恒量及其存在条件,并举例说明结果应用.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号