首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71136篇
  免费   8094篇
  国内免费   4039篇
电工技术   11952篇
技术理论   13篇
综合类   5126篇
化学工业   8538篇
金属工艺   2514篇
机械仪表   2938篇
建筑科学   9844篇
矿业工程   1979篇
能源动力   12572篇
轻工业   2009篇
水利工程   1378篇
石油天然气   2091篇
武器工业   601篇
无线电   5036篇
一般工业技术   7274篇
冶金工业   3466篇
原子能技术   1246篇
自动化技术   4692篇
  2024年   331篇
  2023年   1596篇
  2022年   2545篇
  2021年   2871篇
  2020年   3036篇
  2019年   2723篇
  2018年   2282篇
  2017年   2700篇
  2016年   3042篇
  2015年   2983篇
  2014年   4996篇
  2013年   4729篇
  2012年   5228篇
  2011年   5866篇
  2010年   4509篇
  2009年   4565篇
  2008年   4129篇
  2007年   4495篇
  2006年   3541篇
  2005年   2737篇
  2004年   2289篇
  2003年   1951篇
  2002年   1732篇
  2001年   1485篇
  2000年   1277篇
  1999年   1011篇
  1998年   808篇
  1997年   633篇
  1996年   579篇
  1995年   425篇
  1994年   383篇
  1993年   305篇
  1992年   233篇
  1991年   212篇
  1990年   178篇
  1989年   143篇
  1988年   119篇
  1987年   90篇
  1986年   64篇
  1985年   94篇
  1984年   82篇
  1983年   50篇
  1982年   69篇
  1981年   32篇
  1980年   41篇
  1979年   25篇
  1978年   13篇
  1977年   11篇
  1959年   5篇
  1951年   11篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
《Ceramics International》2021,47(23):33223-33231
The effects of pH of the reaction solution and the concentration of phosphoric acid on the crystal growth behavior of LaPO4 crystallites were investigated and the mechanical properties of rare-earth phosphates were compared. As a result, the concentration of phosphoric acid of 10% was beneficial to the crystal growth of LaPO4 nanocrystalline. When the pH value of the reaction solution was 2, the size of LaPO4 crystallites increased gradually with the increasing reaction temperature, and the smallest crystallite size of 43.27 nm was obtained after heat-treatment at 1000 °C. Simultaneously, the activation energy for crystal growth of LaPO4 nanocrystalline was relatively lower (26.82 kJ mol−1). With the decreasing radii of rare-earth ions, the hardness, Young's modulus and fracture toughness of the bulk rare-earth phosphates exhibited a reduced tendency, resulted from the increase of porosity under the same preparation process.  相似文献   
12.
The triboelectric effect has recently demonstrated its great potential in environmental remediation and even new energy applications for triggering a number of catalytic reactions by utilizing trivial mechanical energy. In this study, Ba4Nd2Fe2Nb8O30 (BNFN) submicron powders were used to degrade organic dyes via the tribocatalytic effect. Under the frictional excitation of three PTFE stirring rods in a 5 mg/L RhB dye solution, BNFN demonstrates a high tribocatalytic degradation efficiency of 97% in 2 h. Hydroxyl radicals (?OH) and superoxide radicals (?O2-) were also detected during the catalysis process, which proves that triboelectric energy stimulates BNFN to generate electron-hole pairs. The tribocatalysis of tungsten bronze BNFN submicron powders provides a novel and efficient method for the degradation of wastewater dye by utilizing trivial mechanical energy.  相似文献   
13.
分析了静电产生的原因,阐述了粉体含能材料生产中的静电起电现象、静电的危害、静电安全性评估标准以及建立在此标准基础上的静电放电危险的评价办法,提出了粉体含能材料在生产、运输中所需要采取的静电防护措施。  相似文献   
14.
Developing high-performance visible-to-UV photon upconversion systems based on triplet–triplet annihilation photon upconversion (TTA-UC) is highly desired, as it provides a potential approach for UV light-induced photosynthesis and photocatalysis. However, the quantum yield and spectral range of visible-to-UV TTA-UC based on nanocrystals (NCs) are still far from satisfactory. Here, three different sized CdS NCs are systematically investigated with triplet energy transfer to four mediators and four annihilators, thus substantially expanding the available materials for visible-to-UV TTA-UC. By improving the quality of CdS NCs, introducing the mediator via a direct mixing fashion, and matching the energy levels, a high TTA-UC quantum yield of 10.4% (out of a 50% maximum) is achieved in one case, which represents a record performance in TTA-UC based on NCs without doping. In another case, TTA-UC photons approaching 4 eV are observed, which is on par with the highest energies observed in optimized organic systems. Importantly, the in-depth investigation reveals that the direct mixing approach to introduce the mediator is a key factor that leads to close to unity efficiencies of triplet energy transfer, which ultimately governs the performance of NC-based TTA-UC systems. These findings provide guidelines for the design of high-performance TTA-UC systems toward solar energy harvesting.  相似文献   
15.
A climate neutral energy system in Germany will most likely require green hydrogen. Two important factors, that determine whether the hydrogen will be imported or produced locally from renewable energy are still uncertain though - the import price for green hydrogen and the upper limit for photovoltaic installations. To investigate the impact of these two factors, the authors calculate cost optimized climate neutral energy systems while varying the import price from 1.25 €/kg to 5 €/kg with unlimited import volume and the photovoltaic limit from 300 GW to unlimited. In all scenarios, hydrogen plays a significant role. At a medium import price of 3.75 €/kg and photovoltaic limits of 300–900 GW the hydrogen supply is around 1200 to 1300 TWh with import shares varying from 60 to 85%. In most scenarios the electrolysis profile is highly correlated with the photovoltaic power, which leads to full load hours of 1870 h–2770 h.  相似文献   
16.
In this work, hydrate based separation technique was combined with membrane separation and amine-absorption separation technologies to design hybrid processes for separation of CO2/H2 mixture. Hybrid processes are designed in the presence of different types of hydrate promoters. The conceptual processes have been developed using Aspen HYSYS. Proposed processes were simulated at different flow rates for the feed stream. A comprehensive cost model was developed for economic analysis of novel processes proposed in this study. Based on the results from process simulation and equipment sizing, the amount of total energy consumption, fixed cost, variable cost, and total cost were calculated per unit weight of captured CO2 for various flow rates of feed stream and in the presence of different hydrate promoters. Results showed that combination of hydrate formation separation technique with membrane separation technology results in a CO2 capture process with lowest energy consumption and total cost per unit weight of captured CO2. As split fraction and heat of hydrate formation increases, the share of hydrate formation section in total energy consumption increases. When TBAB is applied as hydrate promoter, due to its higher hydrate separation efficiency, more amount of CO2 is captured in hydrate formation section and consequently the total cost for process decreases considerably. Hybrid hydrate-membrane process in the presence of TBAB as hydrate promoter with 29.47 US$/ton CO2 total cost is the best scheme for hybrid hydrate CO2 capture process. Total cost for this process is lower than total cost for single MDEA-based absorption process as the mature technology for CO2 capture.  相似文献   
17.
茯砖茶发酵、干燥过程中,烘房内温湿度稳定性和能源系统低能耗是保证茯砖茶品质与成本的重要因素。本文采用TRNSYS仿真与实验研究相结合的方法,对咸阳某茯砖茶厂实际使用的空气源热泵系统进行建模,通过研究各季节典型代表月烘房温湿度的波动情况,确定该空气源热泵系统在全年的运行状态是否满足工艺要求,在此基础上,对比了该系统在全年可运行季节代表月与该生产厂房早期使用的燃气锅炉系统的能耗仿真结果,对空气源热泵系统的节能与环保特性进行研究。结果表明:由于夏季送风质量流量过大且室外空气含湿量较高,7月烘房温湿度不满足工艺要求。热泵系统在1、4、10月的总标煤消耗量的平均值是锅炉系统的44.42%,平均CO2、SO2、NOx排放量分别为锅炉系统的34.13%、44.1%、40.60%。在茯砖茶发酵、干燥的过程中,相比于燃气锅炉系统,空气源热泵系统具有更好的节能与环保特性。  相似文献   
18.
The charge sources, as well as the charging mechanism of the contact electrification (CE) of polymers, are still debatable. Since CE is accompanied by destruction, it is considered that “hard contacting” via ball milling can induce covalent bond scission and produce naked-activated-charge sources. Regarding “soft contacting” via nano-scale sliding, which does not induce covalent bond scission, a frontier-electron, “f-electron, of the naked-activated-charge source is crucial to electron transfer among the naked-activated-charge sources. Here, we configure naked-activated-charge-source models, naked-activated-mechano-anion, and naked-activated-mechano-cation, which are produced by mechanical energy induced heterogeneous covalent bond scission, as well as naked-activated-mechano-radicals that are produced by homogeneous covalent bond scission. Regarding “soft contacting” among naked-activated-charge sources in a vacuum, f-electron can be transferred from a donor to an acceptor if the energy level of the donor is higher than that of the acceptor. The net amount of the normalized transferred-f-electrons is obtained by adopting settings in which the average energy level of the naked-activated-charge sources (as the donors) is higher than that of the sources employed as acceptors. Thus, the surfaces comprising the donors and acceptors will exhibit positive and negative net surface charges, respectively. We conclude that net surface charges depend on the average energy level of naked-activated-charge sources. Further, we observe that the alignment of polyethylene (PE)-polyvinyl chloride (PVC)-polytetrafluoroethylene (PTFE) to the average energy level is identical to that of the triboelectric series.  相似文献   
19.
When planning large-scale 100% renewable energy systems (RES) for the year 2050, the system capacity is usually oversized for better supply-demand matching of electrical energy since solar and wind resources are highly intermittent. This causes excessive excess energy that is typically dissipated, curtailed, or sold directly. The public literature shows a lack of studies on the feasibility of using this excess for country-scale co-generation. This study presents the first investigation of utilizing this excess to generate green hydrogen gas. The concept is demonstrated for Jordan using three solar photovoltaic (PV), wind, and hybrid PV-wind RESs, all equipped with Lithium-Ion battery energy storage systems (ESSs), for hydrogen production using a polymer electrolyte membrane (PEM) system. The results show that the PV-based system has the highest demand-supply fraction (>99%). However, the wind-based system is more favorable economically, with installed RES, ESS, and PEM capacities of only 23.88 GW, 2542 GWh, and 20.66 GW. It also shows the highest hydrogen annual production rate (172.1 × 103 tons) and the lowest hydrogen cost (1.082 USD/kg). The three systems were a better option than selling excess energy directly, where they ensure annual incomes up to 2.68 billion USD while having payback periods of as low as 1.78 years. Furthermore, the hydrogen cost does not exceed 2.03 USD/kg, which is significantly lower than the expected cost of hydrogen (3 USD/kg) produced using energy from fossil fuel-based systems in 2050.  相似文献   
20.
In the present work, two types of shear thickening fluids have been synthesized by using neat and aminosilane functionalized silica nanoparticles and their viscosity curves have been obtained by the rheometer. Based on the values of peak viscosity of synthesized shear thickening fluids, the surface functionalized nanosilica based shear thickening fluid has been chosen as a best candidate due to the high viscosity for impregnation into the neat Kevlar of different layers viz. four (04) and eight (08) layers for velocity impact study. The experimental investigations reveal high energy absorption of shear thickening fluid impregnated Kevlar as compared to the neat Kevlar. The maximum energy absorption 62 J is achieved corresponding to the initial velocity 154 m∙s−1 for 08 layers shear thickening fluid impregnated Kevlar specimen. The data have also been analytically determined and validated with the experimental data. The experimental data have good agreement with the analytical data within the accuracy of around 15 to 20%. The present findings can have significant inferences towards the fabrication of shear thickening fluids using nanomaterials for numerous applications such as soft armors, dampers, nanofinishing and so forth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号