首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   360篇
  免费   7篇
电工技术   2篇
化学工业   112篇
金属工艺   1篇
机械仪表   2篇
建筑科学   13篇
能源动力   221篇
轻工业   4篇
石油天然气   2篇
一般工业技术   3篇
自动化技术   7篇
  2023年   3篇
  2022年   5篇
  2021年   11篇
  2020年   16篇
  2019年   13篇
  2018年   14篇
  2017年   4篇
  2016年   27篇
  2015年   17篇
  2014年   28篇
  2013年   24篇
  2012年   10篇
  2011年   87篇
  2010年   39篇
  2009年   22篇
  2008年   17篇
  2007年   9篇
  2006年   4篇
  2005年   7篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
排序方式: 共有367条查询结果,搜索用时 31 毫秒
21.
Pellet production from agricultural raw materials - A systems study   总被引:1,自引:0,他引:1  
The demand for biofuel pellets has increased considerably in recent years, causing shortage of the traditional raw materials sawdust and wood shavings. In this study, the costs and energy requirements for the production of pellets from agricultural raw materials were analysed. The materials studied were Salix, reed canary grass, hemp, straw, screenings, rape-seed meal, rape cake and distiller’s waste. Four production scales were analysed, having an annual output of 80,000, 8000, 800 and 80 tonnes of pellets per year. It was concluded that the raw materials of greatest interest were Salix and reed canary grass. They had competitive raw material costs and acceptable fuel properties and could be mixed with sawdust in existing large-scale pelleting factories. Straw had low production costs but can cause serious ash-related problems and should, as also is the case for screenings, be avoided in small-scale burners. Hemp had high raw material costs and is of less commercial interest, while distiller’s waste, rape-seed meal and rape cake had higher alternative values when used as protein feed. The scale of production had a crucial influence on production costs. The machinery was used much more efficiently in large-scale plants, resulting in clear cost savings. Small-scale pelleting, both static and mobile, required cheap raw materials, low labour costs and long utilisation times to be profitable. In most cases, briquetting would be more commercially viable. The energy use in manufacturing pellets from air-dried crops was generally no higher than when moist sawdust was used as the raw material.  相似文献   
22.
Current practices for estimating indirect land use change (iLUC) due to United States biofuel production rely on assumption-heavy, global economic modeling approaches. Prior iLUC studies have failed to compare their predictions to past global historical data. An empirical approach is used to detect evidence for iLUC that might be catalyzed by United States biofuel production through a “bottom-up”, data-driven, statistical approach. Results show that biofuel production in the United States from 2002 to 2007 is not significantly correlated with changes in croplands for corn (coarse grain) plus soybean in regions of the world which are corn (coarse grain) and soybean trading partners of the United States. The results may be interpreted in at least two different ways: 1) biofuel production in the United States through 2007 (the last date for which information is available) probably has not induced any indirect land use change, and 2) this empirical approach may not be sensitive enough to detect indirect land use change from the historical data. It seems clear that additional effort may be required to develop methodologies to observe indirect land use change from the historical data. Such efforts might reduce uncertainties in indirect land use change estimates or perhaps form the basis for better policies or standards for biofuels.  相似文献   
23.
Glycerol has drawn increasing attention as a possible fuel, because it has many desirable qualities and is abundant due to the fact that it is a byproduct of biodiesel production. Previous research has shown that non-natural enzyme cascades can be used to create a bioanode that can stepwise oxidize glycerol to carbon dioxide. Two of these enzymes are pyrroloquinoline quinone (PQQ) dependant alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (AldDH) derived from Gluconobacter. The third enzyme, which is responsible for carbon bond cleavage, is oxalate oxidase (OxOx) derived from barley. Previous research has shown that all three enzymes have demonstrated the ability to undergo direct electron transfer to a carbon electrode which allows for a simple and efficient bioanode that completely oxidizes glycerol. In this study, each enzyme was individually immobilized within modified Nafion® on a glassy carbon rotating disc electrode (GC-RDE) and voltammetric analysis was performed employing different rotation rates in a solution containing each enzyme's respective substrate. This substrate was glycerol for alcohol dehydrogenase, glyceraldehyde for aldehyde dehydrogenase, and mesoxalic acid for oxalate oxidase. From the voltammograms, Levich plots were produced and the solution diffusion coefficient (Dsoln), the membrane diffusion coefficient (Dfilm), kCAT, KM, and VMAX were determined.  相似文献   
24.
The use of straight vegetable oil (SVO) as biofuel has been recognized as a valid substitute of diesel fuel in the agricultural sector under specific circumstances. Its direct use reduces most of the chemical processes involved when converting it into biodiesel, thus lowering harmful emissions. This study presents the economic analysis of a self-supply farming model that uses rapeseed as its fuel base. This model addresses agricultural environmental concerns and can even minimize dependence on the fluctuating costs of diesel fuel. The use of SVO in agriculture can help reduce farmers’ vulnerability to fossil fuel prices. The economic evaluation of the model proposed in this study shows clear economic benefits of introducing rapeseed to the traditional crop rotation of wheat and barley. The key factors analyzed in this model are diesel fuel price, diesel fuel grants and crop aids. The current situation in Spain favors the use of diesel fuel in agriculture rather than rapeseed SVO due to an 8% profit difference. However, results show that changes in key factors slightly affect the profit margin, calculating a difference of only 3.7% for particular factor combinations. Combined environmental-friendly agriculture supporting policies are necessary to cover this slight profit difference to promote this biofuel.  相似文献   
25.
This paper uses a new approach of retro-analysis. Typically policy is informed by forward-looking analysis of potential for alternative energy technologies. But historical knowledge of energy and processing requirements and greenhouse effects is more reliable for engineering evaluation of biofuel production systems. This study calculates energy inputs and greenhouse gas emissions for the most efficient biomass feedstocks in New Zealand if the policy had been implemented to maximize liquid biofuel production in the year 2004/2005. The study uses existing processing technologies and agricultural statistics. Bioethanol production is calculated from putrescible wastes and starch crops, and biodiesel production from rapeseed, tallow, wood and waste paper. Each production system is further evaluated using measures of land use, energy input, crop production related to the energy product, plus relative measures of efficiency and renewability. The research findings are that maximum biofuel production in 2004/2005 would have provided only a few per cent of demand, and would not have reduced dependence on foreign imported oil or exposure to fuel price rise. Finally, we conclude that demand management and efficiency are more effective means of meeting policy objectives.  相似文献   
26.
Synthesis and screening of technology alternatives is a key process-development activity in the process industries. Recently, this has become particularly important for the conceptual design of biorefineries. This work introduces a shortcut method for the synthesis and screening of integrated biorefineries. A structural representation (referred to as the chemical species/conversion operator) is introduced. It is used to track individual chemicals while allowing for the processing of multiple chemicals in processing technologies. The representation is used to embed potential configurations of interest. An optimization approach is developed to screen and determine optimum network configurations for various technology pathways using simple data. The solution to the optimization formulation provides a quick and effective method for screening and interconnecting the technological pathways and to distributing the flows over the network. Case studies are solved to illustrate the applicability of the proposed approach.  相似文献   
27.
The highly efficient β-1,4-glucosidase (BGL)-secreting strain, Pholiota adiposa SKU0714, was isolated and identified based on its morphological features and sequence analysis of internal transcribed spacer (ITS) rDNA. P. adiposa BGL (PaBGL), which contained a carbohydrate moiety, was purified to homogeneity from P. adiposa culture supernatants by 2-step chromatography on DEAE and Sephacryl gel filtration columns. The relative molecular weight of PaBGL was 60 kDa by SDS-PAGE or 59 kDa by size exclusion chromatography, indicating that the enzyme is a monomer. The pH and temperature optima for hydrolysis were 5.0 and 65 °C, respectively. PaBGL showed the highest activity towards p-nitrophenyl-β-d-glucopyranoside (Vmax = 4390 U mg protein−1, Km = 2.23 mol m−3) and cellobiose (Vmax = 3460 U mg protein−1, Km = 5.60 mol m−3) ever reported. Its internal amino acid sequences showed homology with hydrolases from the glycoside hydrolase family 3 (GH3), indicating that PaBGL is a member of the GH3 family. The hydrolysis of rice straw using a commercial cellulase, Celluclast® 1.5L, resulted in a higher saccharification yield with the addition of PaBGL than with Novozyme 188. PaBGL may be a good candidate for applications that convert biomasses to biofuels and chemicals.  相似文献   
28.
The aim of this study is to examine how the options for producing electricity, fuels, and heat in a carbon-constrained world affect the cost-effectiveness of a range of fuels and propulsion technologies in the transportation sector. GET 7.0, a global energy system model with five end-use sectors, is used for the analysis. We find that an energy system dominated either by solar or by nuclear tends to make biofuels in plug-in hybrids cost-effective. If coal with carbon capture and storage (CCS) dominates the energy system, hydrogen cars, rather than plug-in hybrids tend to become cost-effective. Performing a Monte Carlo simulation, we then show that the general features of our results hold for a wide range of assumptions for the costs of vehicle propulsion technologies (e.g., batteries and fuel cells). However, sufficiently large changes in say the battery costs may overturn the impact of changes in the energy supply system, so that plug-in hybrid vehicles become cost-effective even if coal with CCS dominate the energy supply. We conclude that analyses of future energy carriers and propulsion technologies need to consider developments in the energy supply system.  相似文献   
29.
A microfluidic glucose/O2 biofuel cell, delivering electrical power, is developed based on both laminar flow and biological enzyme strategies. The device consists of a Y-shaped microfluidic channel in which fuel and oxidant streams flow laminarly in parallel at gold electrode surfaces without convective mixing. At the anode, the glucose is oxidized by the enzyme glucose oxidase whereas at the cathode, the oxygen is reduced by the enzyme laccase, in the presence of specific redox mediators. Such cell design protects the anode from interfering parasite reaction of O2 at the anode and works with different streams of oxidant and fuel for optimal operation of the enzymes. The dependence of the flow rate on the current is evaluated in order to determine the optimum flow that would provide little to no mixing while yielding high current densities. The maximum power density delivered by the assembled biofuel cell reaches 110 μW cm−2 at 0.3 V with 10 mM glucose at 23 °C. This research demonstrates the feasibility of advanced microfabrication techniques to build an efficient microfluidic glucose/O2 biofuel cell device.  相似文献   
30.
The large biomass resource in the Norwegian woods may contribute considerably to the development of a more sustainable energy system. A more complete tree harvest is being promoted, where harvest residues are utilised to provide bioenergy. Little research has addressed the intentions of forest owners towards harvesting forest residues.A survey of non-industrial private forest owners in two municipalities located in the south east of Norway was conducted in order to understand their attitudes and intentions to provide harvest residues for bioenergy production. The results showed that forest owners would be willing to supply harvest residues: about 40% of the respondents were highly in favour and almost 70% expressed a positive opinion.A factor analysis of the attitudinal statements resulted in four main factors of which three were found to significantly affect the intention in a regression analysis. The first factor was related to the beneficial effects of harvest residues, the second covered negative (mainly environmental) effects, and the third covered the positive effects upon forest management.The social influences seemed to have two distinct dimensions: personal relationships (e.g., other forest owners, neighbours and family) and professional interactions (e.g., governmental authorities). While the former had a significant effect on intentions, the latter did not. Finally, socioeconomic variables (gender, age, and municipality) did not influence the intention to deliver harvest residues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号