首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1895篇
  免费   52篇
  国内免费   33篇
电工技术   130篇
综合类   21篇
化学工业   691篇
金属工艺   148篇
机械仪表   70篇
建筑科学   20篇
矿业工程   4篇
能源动力   257篇
轻工业   25篇
石油天然气   31篇
武器工业   2篇
无线电   225篇
一般工业技术   218篇
冶金工业   15篇
原子能技术   9篇
自动化技术   114篇
  2024年   2篇
  2023年   24篇
  2022年   43篇
  2021年   40篇
  2020年   47篇
  2019年   52篇
  2018年   61篇
  2017年   54篇
  2016年   65篇
  2015年   39篇
  2014年   85篇
  2013年   94篇
  2012年   89篇
  2011年   188篇
  2010年   149篇
  2009年   146篇
  2008年   159篇
  2007年   127篇
  2006年   93篇
  2005年   68篇
  2004年   68篇
  2003年   47篇
  2002年   40篇
  2001年   25篇
  2000年   24篇
  1999年   22篇
  1998年   23篇
  1997年   14篇
  1996年   23篇
  1995年   13篇
  1994年   19篇
  1993年   8篇
  1992年   13篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
排序方式: 共有1980条查询结果,搜索用时 15 毫秒
101.
A flat tubular segmented‐in‐series (SIS) solid oxide fuel cell (SOFC) was fabricated using decalcomania paper. The performance of a two‐cell stack with 4.5‐mm‐wide electrodes was investigated in a temperature range of 650–800 °C. The decalcomania paper allowed fabrication of the SIS‐SOFC on all sides of the flat tubular support and achieve an effective electrode area larger than that obtained using typical SOFC fabrication techniques such as screen printing or slurry coating. SEM observations revealed that each component layer was flat, uniformly thick, and well adherent to adjacent layers. Measured values of open circuit voltages were very close to the theoretical values; confirming that the processing technique utilizing decalcomania paper is suitable for SIS‐SOFC fabrication. The power densities of the two‐cell‐stack were 437.4, 375.6, 324.6, and 257.1 mW cm−2 at 800, 750, 700 and 650 °C, respectively.  相似文献   
102.
We compared novel size‐selective separators, namely the textile fabrics of polyphenylene sulfide (PPS) and sulfonated polyphenylene sulfide (S‐PPS), and the nonwoven fabrics of polypropylene80 (PP 80) and PP 100, with commonly used ion exchange separators (Nafion 117 and cation exchange membane‐7000; CMI‐7000) in terms of power generation, oxygen diffusion, and biofilm formation in a single chamber microbial fuel cell. Size‐selective separators exhibited more power generation than ion selective separators. MFC operation with size‐selective separators generated power output ranging 0.407 to 0.591 V (1000 Ω), whereas with Nafion it was 0.272 V. In polarization analysis, S‐PPS resulted in the highest power density of 190 mW/m2, whereas it was 24 mW/m2 with Nafion‐117. Size selective separators showed similar or higher proton conductivity than Nafion 117. Oxygen mass transfer coefficients of size‐selective separators (KO = 3.7 ∼ 7.5 × 10−5) were lower or similar to Nafion (KO = 7.5 × 10−5). Fourier‐transform infrared spectroscopy and scanning electron microscopy analysis revealed that all separators (PP80, S‐PPS, and Nafion) contained proteins or carbon chain compounds after 300‐day operation, and however, Nafion 117 seems to be more susceptible to biofouling than the other separators.  相似文献   
103.
Cathodes with PrBaCo2O5+δ (PBC) and Sm0.5Sr0.5CoO3−δ (SSC) infiltrated on Ce0.9Gd0.1O1.95 (CGO) backbones are prepared using metal nitrates as precursors and ethanol as wetting agent. Electrochemical impedance spectra (EIS) are measured from cathode/CGO/cathode symmetrical cells in 400–650 °C under humidified air. The results indicate that interfacial area specific resistance (ASR) value decreases and then increases with infiltrate loading and minimum values occur at 50 wt.% loading (relative to sum of infiltrate and backbone) for both PBC and SSC infiltrates. ASR values of PBC infiltrated cathodes are lower than that of corresponding SSC infiltrated cathodes in general, and in particular ASR values as low as 1.36 × 10−2 and 2.27 × 10−2 Ω cm2 are obtained at 650 °C in air for 50 wt.% PBC and 50 wt.% SSC infiltrated cathodes, respectively. Conductivity values of CGO electrolyte increase with infiltrate loading and agree with the reported values when the loading reaches 50 wt.%.  相似文献   
104.
In this work, using electrochemical techniques the authors investigated the protective properties of a polypyrrole/polyaniline bilayer as a conductive polymer. A polypyrrole/polyaniline bilayer was deposited on carbon steel substrate by potentiostatic method. The electric capacitance and resistance of the films were monitored with the immersion time in a corrosive solution to investigate the water permeability of the films. Polypyrrole/polyaniline bilayer has a relatively low permeability and good catalytic behavior in passivation of carbon steel in longer periods. The results show that the bilayer has a better anticorrosive behavior compared to homopolymers (polypyrrole and polyaniline).  相似文献   
105.
There has been continuous progress at the High Energy Accelerator Research Organization (KEK) in R&D on vacuum beam ducts adaptable to future high-current particle storage rings. Here we proposed copper beam ducts with antechambers to deal with the severe issues attributed to the high beam currents. The proposed antechamber scheme can withstand intense synchrotron radiation (SR), provide a beam duct with low beam impedance, and effectively reduce the electron cloud effect (ECE) in positron/proton rings. Several trial models were manufactured by a pressing or cold-drawn method, and assembled with electron beam welding. Special vacuum components, such as connection flanges, distributed pumps, and gate valves, were customized for the beam ducts. TiN coating on the inner surface of the beam duct was also investigated as a mitigating measure for the ECE. Trial models of the copper beam ducts were installed into the KEK B-factory (KEKB), and their performances were evaluated using real positron and electron beams.  相似文献   
106.
We propose a new approach based on the use of interpolation which provides a significant increase in the accuracy of electric potential calculation using the impedance method. In a rectangular three-dimensional grid, we use a first order interpolation function to describe the distribution of electric potential within each voxel of the mesh. The electric field obtained analytically from this function is used as a solution of the continuity equation applied to each node of the mesh. The system of node equations is then solved to obtain the potential distribution. The obtained results show that this technique provides better accuracy than the conventional impedance method. This approach is exemplified in this article in problems involving high dielectric constant and low conductivity media similar to biological materials.  相似文献   
107.
Impedance analyses was performed on undoped and Nb-doped CaCu3Ti4O12 (CaCu3Ti4−xNbxO12+x/2; x = 0, 0.01, 0.03, 0.05, 0.1) to investigate their electrical properties. The pellet samples were prepared using the solid state reaction method. Silver electrode was deposited on both pellets’ surfaces for electrical measurement. The thermally etched samples showed tiny bumped domains within the grains. The existence of both domain and grain boundaries are believed to strongly influence the dielectric constant of CaCu3Ti4O12 (CCTO). Undoped CCTO showed two arcs of impedance complex plane while Nb-doped samples have three arcs. Each arc represents the constituent elements of the CCTO. The highest frequency arc is evidence that CCTO consists of conductive domains which measure about 1 Ω and are insulated by two types of barriers, i.e. domain boundary and grain boundary.  相似文献   
108.
SrCe0.95Yb0.05O3 (SCY) and related materials are under consideration as a proton conductors for Solid Oxide Fuel Cell (SOFC) electrolytes. Sintered pellets of SCY are used to perform impedance spectroscopy (IS) studies and fuel cell tests on cells with Pt electrodes of two different morphologies. Electrodes are applied to the SCY pellets by two routes: either by firing on a layer of Pt paint (denoted electrode P) or by magnetron sputtering (electrode S). In impedance spectra recorded over a wide temperature range under humidified hydrogen, in symmetrical cell conditions, cells with S electrodes give rise to a much smaller low frequency impedance feature than the cells with P electrodes. This is tentatively attributed to faster diffusion-related processes taking place at the S electrodes. The behaviour of working fuel cells with S and P electrode morphologies is evaluated in terms of maximum power output and Area Specific Resistance in two-atmosphere tests. The fuel cell anode with the S morphology results in superior fuel cell performance, in agreement with the impedance study. The influence of the two different electrode morphologies on the behaviour of the cells is discussed with reference to their morphology, as determined by SEM and AFM.  相似文献   
109.
Composition and behaviour of cerium films on galvanised steel   总被引:9,自引:0,他引:9  
The composition and corrosion performance of galvanised steel treated by immersion in cerium nitrate solution was investigated by electrochemical techniques and surface analysis. The surface film consists of a mixture of Ce(III) and Ce(IV) compounds, being very rich in Ce(III) in the first instants of the deposition process and becoming gradually enriched in the more oxidised form, Ce(IV). The presence of this film on the surface hinders the corrosion reaction by reducing the rate of both the cathodic and the anodic reactions. The film becomes thicker but more uneven when the time of film growth increases, with the development of defects in the film, which in contact with electrolyte behaves anodic with respect to the covered areas of the surface. These thicker films have revealed lower resistance to corrosion initiation.  相似文献   
110.
Protective Zr(Y)O2−δ-based films sputter-deposited onto apatite-type lanthanum silicate ceramics were appraised for potential applications in solid oxide fuel cells with silicate-based solid electrolytes, where the performance may suffer from surface decomposition processes in reducing atmospheres. Dense and crystalline coatings were deposited using radio-frequency magnetron sputtering from an yttria-stabilized zirconia target. On the basis of microstructural analysis and profile measurements, a sputtering power of 300 W was selected in order to achieve deposition rates in the range 0.50-0.75 μm/h. The surface morphology studies using an atomic force microscope revealed typical film structures with small (<50 nm) grains. The polarization of model electrochemical cells with cermet anodes comprising Ni, yttria-stabilized zirconia and Ce0.8Gd0.2O2−δ (50:30:20 wt.%), deposited onto the protective zirconia films, was found quite similar to that of copper-zirconia cermets without interlayers, suggesting that the electrochemical reaction is essentially governed by the oxygen anion transfer from zirconia phase and/or hydrogen oxidation in the vicinity of zirconia film surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号