首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9107篇
  免费   2082篇
  国内免费   335篇
电工技术   75篇
综合类   166篇
化学工业   3558篇
金属工艺   379篇
机械仪表   166篇
建筑科学   110篇
矿业工程   60篇
能源动力   1235篇
轻工业   260篇
水利工程   7篇
石油天然气   135篇
武器工业   32篇
无线电   1294篇
一般工业技术   3636篇
冶金工业   193篇
原子能技术   63篇
自动化技术   155篇
  2024年   60篇
  2023年   357篇
  2022年   400篇
  2021年   691篇
  2020年   745篇
  2019年   816篇
  2018年   809篇
  2017年   891篇
  2016年   742篇
  2015年   688篇
  2014年   840篇
  2013年   794篇
  2012年   582篇
  2011年   650篇
  2010年   351篇
  2009年   306篇
  2008年   275篇
  2007年   255篇
  2006年   245篇
  2005年   192篇
  2004年   153篇
  2003年   169篇
  2002年   132篇
  2001年   59篇
  2000年   51篇
  1999年   33篇
  1998年   41篇
  1997年   39篇
  1996年   22篇
  1995年   28篇
  1994年   20篇
  1993年   20篇
  1992年   13篇
  1991年   3篇
  1990年   9篇
  1989年   6篇
  1988年   6篇
  1987年   5篇
  1986年   4篇
  1985年   7篇
  1984年   2篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1951年   9篇
排序方式: 共有10000条查询结果,搜索用时 765 毫秒
21.
《Ceramics International》2019,45(10):13409-13413
We report an industrially viable promising approach to produce micrometer-sized multilayer graphene nanoplatelet powder (MGNP) in a scalable quantity via microwave-assisted exfoliation of graphite (MEG) and fragmented into MGNP through liquid-phase exfoliation in the co-solvent mixture by kitchen mixer (KM). KM allows rapid delaminating MEG into MGNP by shear force dominated exfoliation. Majority of MGNPs are with a diameter of few micrometers and thickness is in nanometers. MGNP are crystalline with very limited defects was confirmed by Raman measurements and transmission electron microscopy. This process transforms, more than 86% of graphite flakes into MGNP. This advanced approach opens a new pathway to produce MGNP in bulk quantity as it is feasible, rapid, and cost-effective.  相似文献   
22.
Graphene has been predicted to develop a magnetic moment by proximity effect when placed on a ferromagnetic film, a promise that could open exciting possibilities in the fields of spintronics and magnetic data recording. In this work, the interplay between the magnetoresistance of graphene and the magnetization of an underlying ferromagnetic insulating film is studied in detail. A clear correlation between both magnitudes is observed but through a careful modeling of the magnetization and the weak localization measurements, that such correspondence can be explained by the effects of the magnetic stray fields arising from the ferromagnetic insulator is found. The results emphasize the complexity arising at the interface between magnetic and 2D materials.  相似文献   
23.
Water electrolysis powered by renewable electricity will likely be critical to a future hydrogen economy. However, the typical use of strongly acidic or alkaline electrolytes necessitates the use of expensive materials, while bubbles add to capital and operational costs, due to blocking of the electrode surface and the necessary use of pumps and gas-liquid separators. Here ‘bubble-free’ oxygen evolution at mild pH is carried out using an electrocatalyst that mimics photosystem II (PSII). The bubble-free electrode includes a gas-extracting Gore-Tex® membrane. Edge-functionalised graphene (EFG) is included to mimic the metal-binding local protein environment, and the tyrosine residue, in the oxygen evolving complex (OEC) of PSII, while MnOx and Ca2+ are incorporated to mimic the Mn4CaO5 cluster. Interaction between EFG, MnOx, and Ca2+ results in a significant, 130 mV fall in the overpotential required to drive electrocatalytic oxygen evolution at 10 mA cm−2, compared to the electrode without these biomimetic components.  相似文献   
24.
《Ceramics International》2020,46(10):15925-15934
Herein, reduced graphene oxide/cobalt-zinc ferrite (RGO/Co0.5Zn0.5Fe2O4) hybrid nanocomposites were fabricated by a facile hydrothermal strategy. Results revealed that the contents of RGO could affect the micromorphology, electromagnetic parameters and electromagnetic wave absorption properties. As the contents of RGO increased in the as-synthesized hybrid nanocomposites, the dispersibility of the particles was improved. Meanwhile, numerously ferromagnetic Co0.5Zn0.5Fe2O4 particles were evenly anchored on the wrinkled surfaces of flaky RGO. Besides, the obtained hybrid nanocomposites exhibited superior electromagnetic absorption in both X and Ku bands, which was achieved by adjusting the RGO contents and matching thicknesses. Significantly, when the content of RGO was 7.4 wt%, the binary nanocomposites showed the optimal reflection loss of -73.9 dB at a thickness of 2.2 mm and broadest effective absorption bandwidth of 6.0 GHz (12.0–18.0 GHz) at a thin thickness of merely 2.0 mm. The enhanced electromagnetic absorption performance was primarily attributed to the multiple polarization effects, improved conduction loss caused by electron migration, and magnetic loss derived from ferromagnetic Co0.5Zn0.5Fe2O4 nanoparticles. Our results could provide inspiration for manufacturing graphene-based hybrid nanocomposites as high-efficient electromagnetic wave absorbers.  相似文献   
25.
We present a straightforward method via sol-gel process using polyethylene glycol (PEG) as phase separation inducer to prepare zirconium carbide/silicon carbide (ZrC/SiC) porous monoliths. Organic/inorganic hybrid gels are prepared using zirconium oxychloride, furfuryl alcohol, and tetraethyl orthosilicate as major starting materials. In the presence of PEG, crack-free hybrid monoliths are obtained by drying the wet gels under ambient pressure, whereas in the absence of PEG, the wet gels break into pieces as expected. PEG plays a key role in maintaining the macroscopic shape of the monoliths. After ceramization at 1300–1500?°C, ZrC/SiC porous monoliths are obtained. SEM and mercury intrusion porosimetry data show that PEG also has strong influence on the microstructures of the monoliths. The compressive strengths of the ceramic monoliths are in the range of 0.3 to 0.7?MPa. And their compressive behavior starts to differ due to the changes in their microstructures, especially the pore structure.  相似文献   
26.
《Ceramics International》2020,46(10):16480-16492
Transition metal oxide nanoparticles (CuO, ZnO & Fe2O3) and mixed metal oxides CuO. ZnO.Fe2O3 were fabricated by facile co-precipitation approach for photocatalytic treatment of organic dyes. The structural features, phase purity, crystallite size and morphology of individual and mixed metal oxides were analysed by X-rays diffraction patterns (XRD) and scanning electron microscopic (SEM) analysis. Electrical behaviour of CuO, ZnO, Fe2O3 and mixed metal oxides CuO. ZnO.Fe2O3 was explored by current-voltage (I-V) measurements. Functional groups present in the synthesized metal oxides were investigated by Fourier transform infrared spectroscopy (FTIR) which ensures the existence of M-O functional groups in the samples. The optical bandgap analysis was carried out by UV–visible spectroscopic technique which revealed that the blend of three different transition metal oxides reduced the bandgap energy of mixed metal oxides. The reason behind this reduced bandgap energy is formation of new electronic state which arises due to the metal-oxygen interactions. Moreover, the nanocomposites of CuO.ZnO.Fe2O3 with reduced graphene oxide (rGO) and carbon nanotubes (CNTs) were prepared to study the effect of the carbonaceous materials on the rate of photodegradation. These carbonaceous nanomaterials have plethora properties which can bring advancement in sector of photocatalytic treatment of wastewater. The photocatalytic experiments were performed using methylene blue (MB) as standard dye for comparative study of metal oxides and their composites with rGO and CNTs. The percentage degradation of methylene blue (MB) by nanocomposite CuO.ZnO.Fe2O3/rGO is 87% which is prominent among all samples. This result ascribed the photocatalytic aspects of reduced graphene oxide along with mixed metal oxides.  相似文献   
27.
Here, we report a facile approach to electrostatically couple the surface charges of graphite nanoplate (GNP) fillers and poly(methyl methacrylate) (PMMA) polymer particles using ethylene maleic anhydride (EMA) copolymer as an electrostatic coupling agent. Our strategy involved switching the intrinsic repulsive electrostatic interactions between the directly exfoliated GNPs fillers and the PMMA particles to attractive electrostatic surface interactions for preparing core(PMMA)-shell (GNP) precursor in order to optimizing 3-dimensionally dispersed polymer nanocomposite. As a result, the electrical conductivity of the composites dramatically increased by a factor of 16.7 in the EMA-coupled GNP/PMMA composites compared with that of the EMA-free GNP/PMMA composites. In addition, the percolation threshold was also notably reduced from 0.32 to 0.159 vol% after electrostatic coupling of the GNPs fillers and PMMA particles. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48390.  相似文献   
28.
Class I hydrophobin Vmh2, a peculiar surface active and versatile fungal protein, is known to self‐assemble into chemically stable amphiphilic films, to be able to change wettability of surfaces, and to strongly adsorb other proteins. Herein, a fast, highly homogeneous and efficient glass functionalization by spontaneous self‐assembling of Vmh2 at liquid–solid interfaces is achieved (in 2 min). The Vmh2‐coated glass slides are proven to immobilize not only proteins but also nanomaterials such as graphene oxide (GO) and quantum dots (QDs). As models, bovine serum albumin labeled with Alexa 555 fluorophore, anti‐immunoglobulin G antibodies, and cadmium telluride QDs are patterned in a microarray fashion in order to demonstrate functionality, reproducibility, and versatility of the proposed substrate. Additionally, a GO layer is effectively and homogeneously self‐assembled onto the studied functionalized surface. This approach offers a quick and simple alternative to immobilize nanomaterials and proteins, which is appealing for new bioanalytical and nanobioenabled applications.  相似文献   
29.
30.
为了获得一种稳定可控的能源,提出一种栅控石墨烯热电器件。通过对石墨烯通道的载流子输运机理的分析,获得了温度和栅压对通道电阻的影响。依据半经典Mott公式推导了石墨烯塞贝克系数的表达式,同时给出了石墨烯的电导率和热导率模型。最后通过有限元分析(FEA)建模获得不同栅压条件下的器件温度,当栅极电压VB=0 V时,石墨烯热电器件热端和冷端温度差为30 K;当VB=6 V时,最大温差达到50 K;当VB=30 V时,最小温差只有10 K。结果表明,栅压对热电器件的性能有明显的调控性。该研究可为石墨烯热电器件的设计提供理论参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号