首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115325篇
  免费   11951篇
  国内免费   6093篇
电工技术   18642篇
技术理论   16篇
综合类   7573篇
化学工业   12148篇
金属工艺   4440篇
机械仪表   5603篇
建筑科学   11834篇
矿业工程   3495篇
能源动力   17047篇
轻工业   7051篇
水利工程   2594篇
石油天然气   3867篇
武器工业   1254篇
无线电   10459篇
一般工业技术   10824篇
冶金工业   4768篇
原子能技术   1646篇
自动化技术   10108篇
  2024年   468篇
  2023年   2406篇
  2022年   3789篇
  2021年   4440篇
  2020年   4645篇
  2019年   4048篇
  2018年   3395篇
  2017年   4095篇
  2016年   4522篇
  2015年   4642篇
  2014年   8061篇
  2013年   7292篇
  2012年   8688篇
  2011年   9451篇
  2010年   7108篇
  2009年   7045篇
  2008年   6309篇
  2007年   7196篇
  2006年   6006篇
  2005年   4851篇
  2004年   4083篇
  2003年   3600篇
  2002年   3010篇
  2001年   2588篇
  2000年   2162篇
  1999年   1763篇
  1998年   1381篇
  1997年   1059篇
  1996年   966篇
  1995年   758篇
  1994年   673篇
  1993年   512篇
  1992年   430篇
  1991年   358篇
  1990年   270篇
  1989年   226篇
  1988年   199篇
  1987年   137篇
  1986年   104篇
  1985年   140篇
  1984年   108篇
  1983年   72篇
  1982年   85篇
  1981年   41篇
  1980年   49篇
  1979年   29篇
  1978年   18篇
  1977年   18篇
  1974年   12篇
  1951年   13篇
排序方式: 共有10000条查询结果,搜索用时 48 毫秒
81.
《Ceramics International》2022,48(8):10885-10894
Lead-free bismuth sodium titanate-strontium titanate (NBT-ST) dielectric ceramic materials have been extensively investigated energy storage materials because of their relaxor characteristics. In this study, four different lanthanide elements were introduced into the ferroelectric NBT-ST ceramic to improve their relaxor properties. The introduction of the lanthanide resulted in an increase in disorder at location A within the perovskite lattice and improved relaxor characteristics, leading to a stored energy density of more than 3.5 J/cm3. In particular, an ultrahigh recoverable stored energy density of 4.94 J/cm3 and efficiency of 88.45% were achieved at 440 kV/cm when the NBT-ST ceramic was modified with neodymium. The modified ceramic also exhibited good thermal stability in the range of 30–120 °C, as well as a fast discharge time of ~153 ns, indicating that Nd-incorporated NBT-ST is a promising candidate for electrical energy storage ceramic.  相似文献   
82.
Additive doping is one of the effective methods to overcome the shortcomings of MgH2 on the aspect of relatively high operating temperatures and slow desorption kinetics. In this paper, hollow g-C3N4 (TCN) tubes with a diameter of 2 μm are synthesized through the hydrothermal and high-temperature pyrolysis methods, and then nickel is chemically reduced onto TCN to form Ni/TCN composite at 278 K. Ni/TCN is then introduced into the MgH2/Mg system by means of hydriding combustion and ball milling. The MgH2–Ni/TCN composite starts to release hydrogen at 535 K, which is 116 K lower than the as-milled MgH2 (651 K). The MgH2–Ni/TCN composite absorbs 5.24 wt% H2 within 3500 s at 423 K, and takes up 3.56 wt% H2 within 3500 s, even at a temperature as low as 373 K. The apparent activation energy (Ea) of the MgH2 decreases from 161.1 to 82.6 kJ/mol by the addition of Ni/TCN. Moreover, the MgH2–Ni/TCN sample shows excellent cycle stability, with a dehydrogenation capacity retention rate of 98.0% after 10 cycles. The carbon material enhances sorption kinetics by dispersing and stabilizating MgH2. Otherwise, the phase transformation between Mg2NiH4 and Mg2NiH0.3 accelerates the re/dehydrogenation reaction of the composite.  相似文献   
83.
Bromine-based flow batteries (Br-FBs) are considered one of the most promising energy storage systems due to their features of high energy density and low cost. However, they generally suffer from uncontrolled diffusion of corrosive bromine particularly at high temperatures. That is because the interaction between polybromide anions and the commonly used complexing agent (N–methyl–N–ethyl–pyrrolidinium bromide [MEP]) decreases with increasing temperatures, which causes serious self-discharge and capacity fade. Herein, a novel bromine complexing agent, 1–ethyl–2–methyl–pyridinium bromide (BCA), is introduced in Br-FBs to solve the above problems. It is proven that BCA can combine with polybromide anions very well even at a high temperature of 60 °C. Moreover, the BCA contributes to decreasing the electrochemical polarization of Br/Br2 couple, which in turn improves their power density. As a result, a zinc–bromine flow battery with BCA as the complexing agent can achieve a high energy efficiency of 84% at 40 mA cm−2, even at high temperature of 60 °C and it can stably run for more than 400 cycles without obvious performance decay. This paper provides an effective complexing agent to enable a wide temperature range Br-FB.  相似文献   
84.
《Ceramics International》2021,47(20):28338-28347
Transition metal oxides have been explored in supercapacitor applications owing to their safety, low cost, high specific capacitance and high electrochemical activity. Among all transition metal oxides, zinc oxide based materials show remarkable response for designing the supercapacitors with high electrochemical activity. Here in, Mn doped ZnO (Zn1-xMnxO3 with x = 0, 0.25, 0.50, 0.75 and 1) was synthesized by a facile hydrothermal method. Doping of Mn into the ZnO increased the surface area and decease the charge transfer resistance for the Zn0.5Mn0.5O3. All the synthesized materials were characterized by x-ray diffraction (XRD), scanning electron microscopy SEM), BET, electrochemical tests and other various analytical techniques to confirm the structural, morphological, textural and suprcapacitive properties. The synthesized material Zn0.5Mn0.5O3 having the porous nanoribons structure with BET surface area (2490 cm2/g). The electrochemical studies showed significantly enhanced response toward pseudocapacitive nature. The synthesized material exhibited the excellent specific capacitance (515F/g), specific energy (28.61 Wh/kg) and specific power (1000 W/kg) at current density of 2 mA/g. Such impressive and superior properties make the MnZnO3 material as promising candidate for new generation supercapacitor applications.  相似文献   
85.
This work aims to improve the existing monitoring systems MS for two grid-connected PV stations GCPVS of URERMS ADRAR, to eliminate its limitations. This improvement consists of developing an MS which is used for two PV stations with different configurations. This MS contains new LabVIEW-based monitoring software for visualizing real-time measured data and evaluating GCPVS performance. In addition, it illustrates the 2D and 3D real-time relationships of PV system parameters, which allow us to understand the dynamic behavior of PV system components. This developed monitoring software synchronizes also the various data acquisition units DAU of GCPVS, allowing simultaneous data access.To perform a reliable performance analysis and a comparative study of different GCPVS based on accurate measurements, the sensor's calibration is performed with its DAU. The MS autonomy is ensured by integrating developed PV-UPS. A graphical user interface is provided for the evaluation of PV-UPS performance.  相似文献   
86.
针对气藏型储气库注采井注采过程中储层物性参数影响因素不明确、注采能力不对称的问题。基于相国寺储气库井下连续油管试井测试结果,提出储气库注气期“温降效应”、“变表皮效应”的概念,分析了储气库注采过程中温降效应、变表皮效应以及储层应力敏感对注采的影响。通过气藏型储气库注气期试井分析技术,研究各因素在试井曲线上的响应特征以及对试井解释参数的影响。结果表明:①相对于采气期试井测试,注气期测试得到的储层物性参数具有同样的参考价值;②储气库温降效应对于试井解释结果的影响可忽略不计,而在不同注采运行周期内,变表皮效应以及应力敏感效应影响差异较大;③编制储气库注采运行方案时应充分考虑变表皮效应与应力敏感的影响,在不同注采运行周期内开展试井测试获取准确的储层参数值。研究成果为储气库试井测试与解释提供了重要的研究依据和理论指导。  相似文献   
87.
Li7La3Zr2O12-based garnet-type solid electrolytes are promising candidates for use in all-solid-state lithium batteries (ASSLBs). However, their potential in large-scale commercial applications is largely hindered by the time/energy-consuming and lithium-wasting synthetic method which typically needs a long-duration high temperature solid state reaction process. Herein we invent a fast preparation route that involves a short-period thermal reaction (1100 °C for 10 min) in laboratory muffle furnaces following by conventional hot pressing technique to get almost fully dense (Al, Ga, Ta, Nb)-doped garnet-type electrolytes with high phase purity (>99.9 %). The large and compact grains, low porosity and high phase purities of garnet ceramic electrolytes synthesized in this study ensure superior electrochemical performance. Particularly, Ga-doped cubic Li7La3Zr2O12 shows extremely low Ea values (0.17?0.18 eV) and record-high lithium ionic conductivities (>2 × 10?3 S cm-1 at 25 °C).  相似文献   
88.
《Ceramics International》2022,48(13):18278-18285
We report the improved energy storage density and efficiency after 2.5% of Samarium substitution in ferroelectric Pb[(Mg1/3Nb2/3)0.80Ti0.20]O3 (PMNT) electroceramic. The microstructure and surface morphology were analyzed and correlated with various functional properties. The energy storage density, leakage current density, ferroelectric and dielectric properties were investigated thoroughly, indicating that Samarium's substitution significantly modified the microstructure, the dielectric strength, breakdown electric field, and turned ferroelectric PMNT to relaxor ferroelectrics. Due to the relaxor nature, the gap between remanent polarization and maximum polarization increases with the substitution of Samarium in PMNT matrix, which further increases the recoverable energy storage density and energy efficiency. A nearly 100% increase in recoverable energy density and efficiency was obtained at an electric field strength of 35 kV/cm at room temperature (~296 K). The electroceramic shows maximum energy density near the ferroelectric phase transition temperature (325 K–345 K) region and provides a moderate energy storage density for possible applications in power microelectronics.  相似文献   
89.
针对跨数据中心的资源调度问题,提出了一种基于组合双向拍卖(PCDA)的资源调度方案。首先,将云资源拍卖分为三个部分:云用户代理报价、云资源提供商要价、拍卖代理组织拍卖;其次,在定义用户的优先级及任务紧迫度的基础上,在拍卖过程中估算每一个工作发生的服务等级协议(SLA)违规并以此计算云提供商的收益,同时每轮竞拍允许成交多项交易;最终达到根据用户等级合理分配云资源调度的效果。仿真实验结果表明该算法保证了竞拍成功率,与传统一次拍卖成交一项的组合双向拍卖方案相比,PCDA在竞拍时间段产生的能耗降低了35.00%,拍卖云提供商的利润提高了约38.84%。  相似文献   
90.
This study investigates the ability of hydrogen (H2) to wet clay surfaces in the presence of brine, with implications for underground hydrogen storage in clay-containing reservoirs. Rather than measuring contact angles directly with hydrogen gas, a suite of other gases (carbon dioxide (CO2), argon (Ar), nitrogen (N2), and helium (He)) were employed in the gas-brine-clay system under storage conditions (moderate temperature (333 K) and high pressures (5, 10, 15, and 20 MPa)), characteristic of a subsurface environment with a shallow geothermal gradient. By virtue of analogies to H2 and empirical correlations, wettabilities of hydrogen on three clay surfaces were mathematically derived and interpreted. The three clays were kaolinite, illite, and montmorillonite and represent 1:1, 2:1 non-expansive, and 2:1 expansive clay groups, respectively. All clays showed water-wetting behaviour with contact angles below 40° under all experimental set-ups. It follows that the presence of clays in the reservoir (or caprock) is conducive to capillary and/or residual trapping of the gas. Another positive inference is that any tested gas, particularly nitrogen, is suitable as cushion gas to maintain formation pressure during hydrogen storage because they all turned out to be more gas-wetting than hydrogen on the clay surfaces; this allows easier displacement and/or retrieval of hydrogen during injection/production. One downside of the predominant water wettability of the clays is the upstaged role of biogeochemical reactions at the wetted brine-clay/silicate interface and their potential to affect porosity and permeability. Water-wetting decreased from kaolinite as most water-wetting clay over illite to montmorillonite as most hydrogen-wetting clay. Their wetting behaviour is consistent with molecular dynamic modelling that establishes that the accessible basal plane of kaolinite's octahedral sheet is highly hydrophilic and enables strong hydrogen bonds whereas the same octahedral sheet in illite and montmorillonite is not accessible to the brine, rendering these clays less water-wetting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号