首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68281篇
  免费   7596篇
  国内免费   2626篇
电工技术   1040篇
技术理论   1篇
综合类   2775篇
化学工业   25639篇
金属工艺   10032篇
机械仪表   1258篇
建筑科学   1766篇
矿业工程   928篇
能源动力   1337篇
轻工业   9158篇
水利工程   310篇
石油天然气   1081篇
武器工业   333篇
无线电   2632篇
一般工业技术   16197篇
冶金工业   2875篇
原子能技术   252篇
自动化技术   889篇
  2024年   372篇
  2023年   1624篇
  2022年   2265篇
  2021年   3139篇
  2020年   2910篇
  2019年   2492篇
  2018年   2763篇
  2017年   3131篇
  2016年   3157篇
  2015年   3266篇
  2014年   3875篇
  2013年   4975篇
  2012年   4383篇
  2011年   5421篇
  2010年   3643篇
  2009年   3958篇
  2008年   3265篇
  2007年   3560篇
  2006年   3408篇
  2005年   2661篇
  2004年   2607篇
  2003年   2228篇
  2002年   1817篇
  2001年   1235篇
  2000年   1126篇
  1999年   867篇
  1998年   771篇
  1997年   662篇
  1996年   499篇
  1995年   447篇
  1994年   326篇
  1993年   237篇
  1992年   244篇
  1991年   194篇
  1990年   240篇
  1989年   229篇
  1988年   81篇
  1987年   56篇
  1986年   58篇
  1985年   68篇
  1984年   67篇
  1983年   33篇
  1982年   55篇
  1981年   7篇
  1980年   35篇
  1979年   6篇
  1978年   6篇
  1975年   6篇
  1974年   6篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 388 毫秒
61.
MC nylon-6-b-polyether amine copolymers were prepared with macro-initiator based on amino-terminated polyether amine functionalized with isocyanate via in-situ polymerization. It was found that the introduction of polyether amine delayed the polymerization process of caprolactam by increasing apparent activation energy and pre-exponential factor, resulting in the decrease of molecular weight of nylon-6. The motion of molecular chain of the copolymers was easy because of the decreased hydrogen bonds and weakened inter-molecular forces. The physical entanglement of molecular chains of the copolymers was significant and strong which increased the entanglement density. Only the nylon-6 phase crystallized in the copolymers and the crystal grain size, spherulite size and crystallinity of the copolymers decreased. A small amount of γ crystal formed at high polyether amine content. The copolymers presented obvious strain hardening behavior in stress-strain curves and the loss factor dramatically increased while the glass transition temperature and storage module decreased. The fracture surface of the copolymers became rough and presented hairy structure, indicating that the toughening mechanism of the copolymers corresponded to the multi-layer crack extension mechanism.  相似文献   
62.
Optical studies of residual strain in cadmium telluride (CdTe) films grown using molecular beam epitaxy on gallium arsenide (GaAs) substrate have been performed using photoreflectance techniques. Measurements have been conducted to determine the fundamental transition energy, heavy-hole and light-hole transition energy critical-point parameters in a range of temperatures between 12 and 300 K. There are problems inherent in the fabrication of optoelectronic devices using high-quality CdTe films, due to strain effects resulting from both the lattice mismatch (CdTe: 14.6%) and the thermal expansion coefficient difference. The CdTe film exhibits compressive stress causing valence-band splitting for light and heavy holes. We have used different models to fit the obtained experimental data and, although the critical thickness for the CdTe has been surpassed, the strain due to the lattice mismatch is still significant. However, the strain due to the thermal expansion is dominant. We have found that the fundamental transition energy, E0, is affected by the compressive strain and the characteristic values are smaller than those reported. In addition, the total strain is compressive for the full measured range, since the strain due to the lattice mismatch is one order of magnitude higher than that calculated from the thermal expansion.  相似文献   
63.
This paper presents an effective approach to achieve efficient electrical actuation and monitoring of shape recovery based on patterned Au electrodes on shape memory polymer (SMP). The electrically responsive shape recovery behavior was characterized and monitored by the evolution change in electrical resistance of patterned Au electrode. Both electrical actuation and temperature distribution in the SMP have been improved by optimizing the Au electrode patterns. The electrically actuated shape recovery behavior and temperature evolution during the actuation were monitored and characterized. The resistance changes could be used to detect beginning/finishing points of the shape recovery. Therefore, the Au electrode not only significantly enhances the electrical actuation performance to achieve a fast electrical actuation, but also enables the resistance signal to detect the free recovery process.  相似文献   
64.
This paper presents the fresh, mechanical, and durability performance, of a structural concrete mix classified as C-1, by the Canadian Standards Association (CSA) made with controlled quality Recycled Concrete Aggregate (RCA). Five mixes with water-to-cementing material (w/cm) ratio of 0.40 were produced with various RCA contents and tested against two 0% RCA control mixes made with General Use (GU) cement, and General Use Limestone cement (GUL). The RCA contents in the mixes were 10%, 20%, and 30% by coarse aggregate volume replacement, as well as 10% and 20% fine and coarse (granular) aggregate volume replacement. All evaluated mixes met the specifications from the CSA for fresh, mechanical, and durability properties. The coarse RCA mixes performed better than the granular RCA mixes in terms of flexural and splitting tensile strengths, linear drying shrinkage, water sorptivity, and rapid chloride-ion permeability, where the test results were significantly affected by the ultra fines present in the granular RCA.  相似文献   
65.
《Ceramics International》2020,46(14):22452-22459
Relaxor ferroelectrics have attracted much attention as electric energy storage materials for intermittent energy storage because of their high saturated polarization, near-zero remnant polarizations, and considerable dielectric breakdown strength (BDS). Despite the numerous efforts, the dielectric energy storage performance of relaxor ferroelectric ceramics is incomplete or unsatisfactory. The enhancement of recoverable energy storage density Wrec usually accompanies with the sacrifice of discharge-to-charge energy efficiency η; therefore, it is an important issue to achieve high recoverable Wrec and large efficiency η simultaneously. In this work, the (1-x)BaTiO3-xBi(Zn1/2Zr1/2)O3 (abbreviated as BT-100xBZZ, 0 ≤ x ≤ 0.20) ferroelectric ceramics were prepared using the conventional solid-state reaction method. The phase structure, microstructural morphology, dielectric and ferroelectric properties, relaxation behaviors, and energy storage properties of BT-BZZ ceramics were investigated in detail. X-ray powder diffraction, dielectric spectra, and ferroelectric properties confirm the transformation of tetragonal phase for normal ferroelectrics (BT) to pseudo-cubic phase for relaxor ferroelectrics (BT-8BZZ). A high recoverable energy storage density Wrec of 2.47 J/cm3 and a large energy efficiency η of 94.4% are simultaneously achieved in the composition of BT-12BZZ, which presents typical weakly coupled relaxor ferroelectric characteristics, with an activation energy Ea of 0.21 eV and a freezing temperature Tf of 139.7 K. Such excellent energy storage performance suggests that relaxor ferroelectric BT-12BZZ ceramics are promising dielectric energy storage materials for high-power pulsed capacitors.  相似文献   
66.
Fiber orientations play the decisive role in grinding process of woven ceramic matrix composites, but the influence of woven fibers in grinding process is not clear. This paper studies the surface quality and grinding force by comparing different woven surfaces. Through a series of experiments in optimized sampling conditions, we analyze characteristics of the material surface topography height, wave distribution and surface support properties in details. And we find some outstanding characteristics of the surface microstructure. We also study the influence of grinding processing parameters on surface microstructure. The results show that machining surface which contains more parallel fibers is rougher and more keenness than gauss surface. Grinding wheel speed and depth of cut have great influence on surface topography and surface support properties. And it is discovered that grinding forces are also highly dependent on fiber orientations. The mechanism of the grinding phenomena is also analyzed in this paper according to knowledge of fracture mechanics and mechanical damage phenomenology. The research obtained will be an important technical support on improving the processing quality of woven ceramic matrix composites.  相似文献   
67.
The study presents the preparation of the new magnetic nanocomposite based on PLGA and magnetite. The PLGA used to obtain the magnetic nanocomposites was synthesized by the copolymerization of lactic acid with glycolic acid, in the presence of tin octanoate [Sn(Oct)2] as catalyst, by polycondensation procedure. Magnetite was obtained by co-precipitation from aqueous salt solutions FeCl2/FeCl3. The particles size of magnetite was 420 nm, and the saturation magnetization 62.78 emu/g, while the PLGA/magnetite nanocomposite size was 864 nm and the saturation magnetization 39.44 emu/g. The magnetic nanocomposites were characterized by FT-IR, DLS technique, SEM, VSM and simultaneous thermal analyses (TG–FTIR–MS). The polymer matrix PLGA acts as a shell and carrier for the active component, while magnetite is the component which makes targeting possible by external magnetic field manipulation. Based on the gases resulted by thermal degradation of PLGA copolymer, using the simultaneous analysis TG–FTIR–MS, a possible degradation mechanism was proposed.  相似文献   
68.
An experimental investigation on the mechanism of porosity formation during the laser joining of carbon fiber reinforced polymer (CFRP) and steel is presented. The porosity morphology and distribution were characterized by optical and scanning electron microscopy, and the thermal pyrolysis behaviors were investigated by thermal analysis and designed back-side cooling experiments. The results show that there are two types of porosities in CFRP. Porosity I only appears when the heat input is more than 77.8 J/mm. It has a smooth inner wall and distributes near the bonding interface between CFRP and steel at the central area of melted zone, which is caused by gaseous products such as CO2, NH3, H2O, and hydrocarbons produced by the pyrolysis of CFRP. Porosity II can be seen under all joining conditions. It has a rough inner wall and distributes far away from the bonding interface, concentrating at the final solidification locations. Porosity II is caused by the shrinkage of melted CFRP during solidification stage.  相似文献   
69.
Possessing unique designs and properties absent in conventional materials, nanocomposites have made a remarkable imprint in science and technology. This is particularly true regarding the polymer matrix composites when they are further reinforced with nanoparticles. In this study, the effects of different weight percentages (0, 0.1, 0.2, 0.3, 0.4, and 0.5) of surface-modified graphene nanoplatelets (GNPs) on the microhardness and wear properties of basalt fibers/epoxy composites were investigated. The GNPs were surface modified by silane, and the composites were made by the hand lay-up method. The wear tests were conducted under two different loads of 20 and 40 N. The best wear properties were achieved at 0.3 wt % GNPs as a result of the GNPs' self-lubrication property and the formation of a stable transfer/lubricating film at the pin and disk interface. Moreover, the friction coefficient was lower at the higher normal load of 40 N. The microscopic studies by FESEM and SEM showed that the presence of GNPs up to 0.3 wt % led to the stability of the transfer/lubricating film by enhancing the adhesion of the basalt fibers to the epoxy resin. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47986.  相似文献   
70.
《Ceramics International》2020,46(10):16151-16156
Silicon carbide (SiC) particles were utilized to improve the mechanical, thermal and anti-ablative properties of carbon/phenolic (C/Ph) composites. SiC–C/Ph composites were fabricated with different weight percentage of SiC by vacuum impregnation method. The mechanical and thermal properties were characterized by compression tests, thermal conductivity tests, and thermogravimetric analysis; meanwhile, ablation resistance was investigated using plasma wind tunnel tests and scanning electron microscopy. Experimental results showed that 5 wt% SiC modified C/Ph composites owned the optimum properties. Moreover, introducing SiC particles could result in an obvious decrease of compression strength, but an increase of thermal stability, thermal conductivity and anti-ablative performance. Notably, the ablation rate reached its the lowest point at 5% the SiC content in resin matrix composites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号