首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23224篇
  免费   437篇
  国内免费   322篇
电工技术   476篇
综合类   421篇
化学工业   4459篇
金属工艺   750篇
机械仪表   136篇
建筑科学   214篇
矿业工程   66篇
能源动力   13591篇
轻工业   1328篇
水利工程   32篇
石油天然气   611篇
武器工业   46篇
无线电   169篇
一般工业技术   941篇
冶金工业   301篇
原子能技术   232篇
自动化技术   210篇
  2024年   12篇
  2023年   971篇
  2022年   1509篇
  2021年   1446篇
  2020年   1340篇
  2019年   1367篇
  2018年   1022篇
  2017年   918篇
  2016年   241篇
  2015年   270篇
  2014年   1376篇
  2013年   1329篇
  2012年   1388篇
  2011年   1701篇
  2010年   1391篇
  2009年   1276篇
  2008年   1019篇
  2007年   1060篇
  2006年   750篇
  2005年   563篇
  2004年   460篇
  2003年   460篇
  2002年   355篇
  2001年   288篇
  2000年   242篇
  1999年   235篇
  1998年   202篇
  1997年   154篇
  1996年   132篇
  1995年   111篇
  1994年   100篇
  1993年   68篇
  1992年   61篇
  1991年   36篇
  1990年   29篇
  1989年   20篇
  1988年   11篇
  1987年   12篇
  1986年   12篇
  1985年   12篇
  1984年   8篇
  1983年   7篇
  1982年   4篇
  1981年   3篇
  1980年   5篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Development of highly efficient and cheap electrocatalysts towards the hydrogen evolution reaction (HER) is of great importance for electrochemical water splitting. Herein, hybrid Cu/NiMo-P nanowires on the copper foam were successfully fabricated via a simple two-step method. The hierarchically structured Cu/NiMo-P exhibits large surface areas and rapid electron transfer ability, leading to enhanced catalytic activity. The as-prepared Cu/NiMo-P electrodes need overpotentials of 34 mV and 130 mV to obtain 10 mA cm?2 for HER in acidic and alkaline solutions, respectively. Density functional theory (DFT) calculations reveal that the Cu/NiMo-P hybrid has a more thermo-neutral hydrogen adsorption free energy and enhanced charge transfer ability as well.  相似文献   
32.
With a growing interest in hydrogen as energy carrier, the efficient purification of hydrogen from gaseous mixtures is very important. This paper addresses the separation of hydrogen using Carbon Molecular Sieves Membranes (CMSM), which show an attractive combination of high permeability, selectivity and stability. Supported CMSM containing various amounts of aluminium have been prepared from novolac and aluminium acetyl acetonate (Al(acac)3) as carbon and alumina precursors. The thickness of the CMSM layers depend on the content of Al(acac)3 in the dipping solution, which also has influence in the pore size and pore size distribution of the membranes. The permeation properties of the membranes against the Al content in the membrane follows a volcano shape, where the membrane containing 4 wt (%) of Al(acac)3 has the best properties and was stable during 720 h for hydrogen at 150 °C and 6 bar pressure difference. All the CMSM have permeation properties well above the Robeson Upper limit.  相似文献   
33.
Hook and claw pumps are used for recirculation of excess hydrogen in fuel cells. Optimization of the pump design is essential. Computational Fluid Dynamic (CFD) is an effective method for performance optimization. However, it is difficult to conduct CFD simulation because of the sharp cusp of the rotor profile. Cut cell Cartesian mesh could be the solution to handle this complex and moving geometries. The aim of this paper is to evaluate ANSYS Forte for hook and claw pumps. Firstly, the conservation accuracy of the cut cell cartesian mesh is verified using an adiabatic piston cylinder case. Then, simulation results of hook and claw type pump are compared with experimental data. Finally, simulation results of air and hydrogen are compared. The results show that the CFD simulation of hook and claw pumps using cut cell cartesian mesh could provide an efficient and effective approach for the optimization of the system.  相似文献   
34.
Injecting hydrogen into the natural gas network to reduce CO2 emissions in the EU residential sector is considered a critical element of the zero CO2 emissions target for 2050. Burning natural gas and hydrogen mixtures has potential risks, the main one being the flame flashback phenomenon that could occur in home appliances using premixed laminar burners. In the present study, two-dimensional transient computations of laminar CH4 + air and CH4 + H2 + air flames are performed with the open-source CFD code OpenFOAM. A finite rate chemistry based solver is used to compute reaction rates and the laminar reacting flow. Starting from a flame stabilized at the rim of a cylindrical tube burner, the inlet bulk velocity of the premixture is gradually reduced to observe flashback. The results of the present work concern the effects of wall temperature and hydrogen addition on the flashback propensity of laminar premixed methane-hydrogen-air flames. Complete sequences of flame dynamics with gradual increases of premixture velocity are investigated. At the flame flashback velocities, strong oscillations at the flame leading edge emerge, causing broken flame symmetry and finally flame flashback. The numerical results reveal that flashback tendency increase with increasing wall temperature and hydrogen addition rate.  相似文献   
35.
Energy depletion and environmental pollution are still serious challenges for human beings. The application of hydrogen energy should be a promising strategy to address this issue. However, the hydrogen production should be one shortcoming for hydrogen energy. The hydrogen evolution reaction (HER) based on electrocatalysis is an effective way to enhance the hydrogen generation with small energy consumption under ambient conditions. Many works have been devoted to develop high performance catalysts to satisfy the HER processes. Nevertheless, the mechanism about facet-dependence and composition-dependence influence is still need to deeply study. Hereon, based on density functional theory calculations, the [100], [110], and [111] facets of NixPy (Ni3P, Ni2P, NiP, NiP2, NiP3) systems were created and their HER catalytic activity were used to reveal the underline mechanism. By analyzing the variation of Gibbs free energy, it was found that the structural composition has a greater effect on HER than the facet. Significantly, the Ni2P(111) surface with Ni/P-termination has the best HER performance for all samples in present work. Through exploring the electron transfer of H with surrounding atoms during the HER process, the H adsorption mechanism as well as its reaction mechanism has been revealed. The deep insights in this work provide an important fundamental that the contents of non-metal for compounds catalysts can heavily influence the performance of HER, which should give more guidance for designing new catalysts.  相似文献   
36.
Ambient condition, especially the wind condition, is an important factor to determine the behavior of hydrogen diffusion during hydrogen release. However, only few studies aim at the quantitative study of the hydrogen diffusion in a wind-exist condition. And very little researches aiming at the variable wind condition have been done. In this paper, the hydrogen diffusion in different wind condition which including the constant wind velocity and the variable wind velocity is investigated numerically. When considering the variable wind velocity, the UDF (user defined function) is compiled. Characteristics of the FGC (flammable gas cloud) and the HMF (hydrogen mass fraction) are analyzed in different wind condition and comparisons are made with the no-wind condition. Results indicate that the constant wind velocity and the variable wind velocity have totally different effect for the determination of hydrogen diffusion. Comparisons between the constant wind velocity and the variable wind velocity indicate that the variable wind velocity may cause a more dangerous situation since there has a larger FGC volume. More importantly, the wind condition has a non-negligible effect when considering the HMF along the radial direction. As the wind velocity increases, the distribution of the HMF along the radial direction is not Gaussian anymore when the distance between the release hole and the observation line exceeds to a critical value. This work can be a supplement of the research on the hydrogen release and diffusion and a valuable reference for the researchers.  相似文献   
37.
A promising electrocatalyst containing variable percentage of V2O5–TiO2 mixed oxide in graphene oxide support was prepared by embedding the catalyst on Cu substrate through facile electroless Ni–Co–P plating for hydrogen evolution reaction. The solvothermal decomposition method was opted for tuning the crystalline characteristics of prepared material. The optimized mixed oxide was well characterized, active sites centres were identified and explained by X-ray diffraction, high resolution tunnelling electron microscopy, scanning electron microscopy coupled with energy dispersive X-ray and X-ray photon spectroscopy analysis. The structural and electronic characteristics of material was done by fourier transform infrared spectroscopy and the electrochemical behaviour of the prepared material was evaluated by using Tafel plot, electrochemical impedance analysis, linear sweep voltammetry, open circuit analysis and chronoamperometry measurements. The results show the enhanced catalytic activity of Ni–Co–P than pure Ni–P plate, due to synergic effect. Moreover, the prepared mixed oxide incorporated Ni–Co–P plate has a high activity towards HER with low over potential of 101 mV, low Tafel slope of 36 mVdec?1, high exchange current density of 9.90 × 10?2 Acm?2.  相似文献   
38.
Photocatalytic H2 generation using semiconductor photocatalysts is considered as a cost-effective and eco-friendly technology for solar to energy conversion; however, the present photocatalysts have been recognized to depict low efficiency. Currently, porous coordination polymers known as metal-organic frameworks (MOFs) constituting flexible and modifiable porous structure and having excess active sites are considered to be appropriate for photocatalytic H2 production. This review highlights current progress in structural development of MOF materials along with modification strategies for enhanced photoactivity. Initially, the review discusses the photocatalytic H2 production mechanism with the concepts of thermodynamics and mass transfer with particular focus on MOFs. Elaboration of the structural categories of MOFs into Type I, Type II, Type III and classification of MOFs for H2 generation into transition metal based, post-transition metal based, noble-metal based and hetero-metal based has been systematically discussed. The review also critically deliberate various modification approaches of band engineering, improvement of charge separation, efficient irradiation utilization and overall efficiency of MOFs including metal modification, heterojunction formation, Z-scheme formation, by introducing electron mediator, and dye based composites. Also, the MOF synthesized derivatives for photocatalytic H2 generation are elaborated. Finally, future perspectives of MOFs for H2 generation and approaches for efficiency improvement have been suggested.  相似文献   
39.
A new reverse build-up method is developed to fabricate an economical H2-permeable composite membrane. Sputtering and electroplating are used for the formation of a membrane comprised of a 3.7-μm-thick Pd60Cu40 (wt.%) alloy layer and a 13-μm-thick porous Ni support layer, respectively. The H2-permeation measurements are performed under the flow of a gaseous mixture of H2 and He at 300–320 °C and 50–100 kPa of H2 partial pressure. The H2/He selectivity values exceed 300. The activation energy at 300–320 °C is 10.9 kJ mol−1. The H2 permeability of the membrane is 1.25 × 10−8 mol m−1 s−1 Pa−0.5 at 320 °C after 448 h. The estimated Pd cost of the proposed membrane is approximately 1/8 of the cost for a pure Pd60Cu40 membrane. This study demonstrates that the proposed method allows the facile production of low-cost, Pd-based membranes for H2 separation.  相似文献   
40.
The production of hydrogen, a favourable alternative to an unsustainable fossil fuel remains as a significant hurdle with the pertaining challenge in the design of proficient, highly productive and sustainable electrocatalyst for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, the dysprosium (Dy) doped copper oxide (Cu1-xDyxO) nanoparticles were synthesized via solution combustion technique and utilized as a non-noble metal based bi-functional electrocatalyst for overall water splitting. Due to the improved surface to volume ratio and conductivity, the optimized Cu1-xDyxO (x = 0.01, 0.02) electrocatalysts exhibited impressive HER and OER performance respectively in 1 M KOH delivering a current density of 10 mAcm?2 at a potential of ?0.18 V vs RHE for HER and 1.53 V vs RHE for OER. Moreover, the Dy doped CuO electrocatalyst used as a bi-functional catalyst for overall water splitting achieved a potential of 1.56 V at a current density 10 mAcm?2 and relatively high current density of 66 mAcm?2 at a peak potential of 2 V. A long term stability of 24 h was achieved for a cell voltage of 2.2 V at a constant current density of 30 mAcm?2 with only 10% of the initial current loss. This showcases the accumulative opportunity of dysprosium as a dopant in CuO nanoparticles for fabricating a highly effective and low-cost bi-functional electrocatalyst for overall water splitting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号