首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2079篇
  免费   352篇
  国内免费   18篇
综合类   67篇
化学工业   607篇
金属工艺   11篇
机械仪表   13篇
建筑科学   5篇
矿业工程   3篇
能源动力   3篇
轻工业   1681篇
水利工程   1篇
石油天然气   4篇
无线电   12篇
一般工业技术   30篇
冶金工业   3篇
原子能技术   4篇
自动化技术   5篇
  2024年   23篇
  2023年   52篇
  2022年   80篇
  2021年   174篇
  2020年   101篇
  2019年   80篇
  2018年   98篇
  2017年   101篇
  2016年   102篇
  2015年   122篇
  2014年   134篇
  2013年   129篇
  2012年   183篇
  2011年   185篇
  2010年   120篇
  2009年   100篇
  2008年   101篇
  2007年   142篇
  2006年   97篇
  2005年   82篇
  2004年   52篇
  2003年   40篇
  2002年   45篇
  2001年   14篇
  2000年   17篇
  1999年   12篇
  1998年   10篇
  1997年   9篇
  1996年   6篇
  1995年   6篇
  1994年   6篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1985年   3篇
  1984年   2篇
  1980年   1篇
排序方式: 共有2449条查询结果,搜索用时 62 毫秒
11.
Marine antifouling coating using functional polymers has emerged as an important tool to combat marine fouling. Owing to their natural abundance, polysaccharides represent a more sustainable option than synthetic polymers and carrageenan, a sulfated polysaccharide, is identified as a promising candidate for further research based on its excellent marine antifouling properties. However, existing research has only explored the application of carrageenan-based coatings for 2D objects, using techniques such as spin-coating. Here, a spray-coating method is proposed to apply carrageenan-based coatings to the surfaces of 2- and 3-D objects. The coated surfaces exhibit high stability under various chemical/physical stresses and high resistance to protein adsorption and marine diatom adhesion.  相似文献   
12.
This contribution describes the absorption percentage of Pb2+ and Cu2+ from water by a superabsorbent hydrogel matrix (SH) made from an anionic polysaccharide copolymerized with acrylic acid (AAc) and acrylamide (AAm). Metal‐absorption tests, upon sequential pH variation, indicated that the SH has pH‐sensitivity for the absorption of both metals from solution, attributed to the functional ionic groups (? COOH) present in the AAc and arabic gum (AG) segments. At the pH 5.0, the SH exhibited good absorption capacity: 73.10% for Pb2+, 81.99% for Cu2+ in water and 63.64% for Pb2+, and 76.67% for Cu2+ in saline water with 0.1 mol kg?1 ionic strength. A replicated 22 full factorial design with a central point was built to evaluate the maximum absorption capacity of the metals into the SH. It was found that both the interaction and main effects of the pH and the initial concentration of metal solution on absorption percentage of the metals were statistically significant. Surface response plots indicated that the absorption capacity of both metals into the SH may be appreciably improved by using the solutions with lower initial concentration of metal and with higher pH values. Metal‐absorption results demonstrated that the SH is a convenient material for absorption of Pb2+ and Cu2+ from pure aqueous and saline aqueous environments. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   
13.
Polyelectrolyte complexes (PECs) composed of chitosan and hyaluronic acid (HA) were prepared in various pH regions and at different weight ratios. At low pHs, there was a strong ionic interaction between NH groups in chitosan and both COO? and COOH groups in HA due to the deprotonation of HA, whereas weak linkages were formed at high pHs because only the carboxyl groups of HA could interact with NH groups in chitosan. The formation of PECs resulted in a decrease in the crystallinity and thermal stability caused by the interactions between polyions. With variations in the degree of ionization of polyions at various pH conditions, novel PEC sponges were prepared by the freeze drying of PEC solutions. Furthermore, for the evaluation of the wound‐healing effect of PEC sponges with or without an antimicrobial agent (silver sulfadiazine), they were applied to a full‐skin defect of a Wistar rat in vivo. The histology and computerized morphometric analysis of the epidermal healing confirmed the proliferation of fibroblasts in the wound bed and a distinct reduction in infectious agents. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 925–932, 2003  相似文献   
14.
The enzymatic degradation of poly(N‐isopropyl acrylamide) (PNIPAM) grafted to carboxymethylcellulose (CMC) copolymers with a cellulasic preparation (Trichoderma viride) was studied. The enzymatic activity of the cellulasic preparation against CMC and the grafted copolymers was determined by the Petterson–Porath method, while their reduced viscosity variation in the presence of the same preparation was also followed. It has been shown that the enzymatic degradation behavior depends on the copolymer composition and the reaction temperature. Reducing sugars analysis showed that the experimental values for the grafted copolymers were higher than the calculated ones. At 50°C, the enzymatic reaction is completed in about 20 min for the copolymers, whereas for CMC it takes more than 40 min. It can be concluded that their enzymatic degradation is facilitated by the presence of the PNIPAM grafts. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 1383–1386, 2003  相似文献   
15.
Multi‐angle laser light scattering (MALLS) was used to characterize birch kraft pulps with respect to their absolute molecular mass distributions (MMDs). The pulps were dissolved in lithium chloride/N,N‐dimethylacetamide and separated by size exclusion chromatography (SEC). The weight‐average and number‐average molecular masses of the cellulose fractions of the pulps obtained from the absolute MALLS measurements were compared with the molar masses obtained by direct‐standard‐calibration relative pullulan standards. Discrepancies between the two detection methods were found, and two ways of correlating the relative pullulan molar masses to the absolute molar masses were examined. In the first method, the correlation was made over a large range of molecular masses. The second method correlated the molecular masses of the standards to the molecular masses of samples by the calculation of fictitious, cellulose‐equivalent molar masses of the standards. With the preferred second method, a more correct MMD of kraft pulp samples could, therefore, be obtained from an SEC system calibrated with narrow standards. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1170–1179, 2003  相似文献   
16.
The chemistry and technology of oriental lacquer, proof of long-term durability by a laboratory test, and morphological features of the closely packed shell (polysaccharides–glycoproteins)–core (polymerized urushiol) microgel particles, which are chiefly responsible for degradation due to efflorescence outdoors, are described. The dimerization mechanism of urushiol was demonstrated by separation of over 20 urushiol dimer derivatives. Physiological dimerization of urushiol in the lacquer is very much influenced by the humidity in drying, and the interaction of semiquinone radicals with metal ions, hydrophilic polysaccharides and amphipathic glycoproteins contained in the lacquer. A mechanism for renewable oriental lacquer is proposed, involving harmony of technology and nature within the lacquer tree plantations in south-east Asia. A brief review of studies of lacquer chemistry and synthetic coatings is given.  相似文献   
17.
在单因素试验的基础上,利用响应面法分析优化了微波提取灰树花菌丝体多糖的工艺条件,并与直接水提法进行了比较.结果表明,微波辅助提取灰树花菌丝体多糖的最佳工艺条件为:微波功率570.21 W、提取时间6.91 min、液料比(mL/g)40.29∶1,提取两次,预测最大提取率为11.33%,验证试验的实际提取率为11.30%,与理论预测值的相对误差仅为0.26%,和直接水提法相比,多糖提取率提高了4倍.  相似文献   
18.
Novel polymer blends were prepared from a mixture of 2 wt % konjac glucomannan and 4 wt % quaternized poly(4‐vinyl‐N‐butyl) pyridine (QPVP) in aqueous solution and dried at room temperature for 72 h. Their structure and properties were studied by infrared, wide‐angle X‐ray diffraction, scanning electron microscopy, thermogravimetric analysis, and differential scanning calorimetry. Thermal stability in the dry state was reduced with increasing content of QPVP. Compared with QPVP film, the tensile strength of the films was improved in the dry state. The maximum value of 12.74% tensile break elongation was reached when the content of QPVP was 30%. Structural analysis indicated that clear phase separation was observed when the content of QPVP was only 50%. Results from the filmcoating preservation experiments with lychee showed that this blend film had water‐holding ability. The fruit weight loss rate and rot rate both decreased in various degrees. The potential uses of these novel polymer films could be as preservative films. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1868–1875, 2004  相似文献   
19.
Iodine-loaded poly(silicic acid) gellan nanocomposite film was fabricated and evaluated for antibacterial properties. Poly(silicic acid) nanoparticles were synthesized by condensation of silicic acid under alkaline conditions in the presence of polyvinyl pyrrolidone, phosphate ions, and molecular iodine. The nanoparticles were incorporated into gellan dispersion to prepare gellan nanocomposite film using the solvent casting method. The nanocomposite films were characterized by Fourier transformed infrared spectroscopy, thermogravimetric analysis, and X-ray diffraction studies. The results of characterization studies indicated improved thermal stability and an increase in the degree of crystallinity. The scanning electron micrographs and energy dispersive X-ray spectrum confirmed the uniform dispersion of silica and iodine in the nanocomposite films. The analysis of physical and mechanical properties revealed the enhanced tensile strength, moisture resistance, and higher folding endurance of poly(silicic acid) gellan nanocomposite films as compared to gellan film. Further, the iodine-loaded poly(silicic acid) gellan nanocomposite films showed good antibacterial activity against Staphylococcus aureus and Escherichia coli and effective mucoadhesive strength. The results indicate that iodine-loaded poly(silicic acid) gellan nanocomposite mucoadhesive film can be used for potential antibacterial applications in pharmaceuticals.  相似文献   
20.
In this work, carboxymethyl cellulose (CMC) with low substitution degree, followed by different posttreatments, was applied to prepare treelike CMC nanofibrils (CMCNFs) and rodlike CMC nanocrystals (CMCNCs), and their performance in CMC composite film was evaluated simultaneously. From transmission electron microscopy results, it was found that the treelike CMCNCFs exhibited a lager aspect ratio compared to the rodlike CMCNCs. As for reinforcing CMC film, 4 wt% was the best adding amount, at this time, the tensile strength of CMC/CMCNFs and CMC/CMCNCs composite films was increased by 72.1% and 47.3%, respectively. Moreover, adding these nanofillers to CMC also could enhance the thermal stability of composite films slightly, while the transmittance of composite films was reduced at the same time. In addition, CMC/CMCNFs film was designed as a packaging box to determine its performance. Therefore, this study could reveal the differences of properties for composites with different types of nanocellulose and provide a foundation for further application of nanocellulose.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号