首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40208篇
  免费   5275篇
  国内免费   1544篇
电工技术   1403篇
技术理论   2篇
综合类   1872篇
化学工业   10393篇
金属工艺   793篇
机械仪表   1058篇
建筑科学   2676篇
矿业工程   352篇
能源动力   7184篇
轻工业   3199篇
水利工程   281篇
石油天然气   1328篇
武器工业   320篇
无线电   6909篇
一般工业技术   7548篇
冶金工业   576篇
原子能技术   311篇
自动化技术   822篇
  2024年   109篇
  2023年   1183篇
  2022年   1066篇
  2021年   2576篇
  2020年   1925篇
  2019年   1756篇
  2018年   1511篇
  2017年   1866篇
  2016年   1926篇
  2015年   1904篇
  2014年   2835篇
  2013年   2755篇
  2012年   2973篇
  2011年   3568篇
  2010年   2419篇
  2009年   2314篇
  2008年   1916篇
  2007年   2174篇
  2006年   1888篇
  2005年   1464篇
  2004年   1161篇
  2003年   1022篇
  2002年   799篇
  2001年   715篇
  2000年   582篇
  1999年   392篇
  1998年   419篇
  1997年   319篇
  1996年   234篇
  1995年   178篇
  1994年   209篇
  1993年   143篇
  1992年   115篇
  1991年   95篇
  1990年   74篇
  1989年   60篇
  1988年   41篇
  1987年   51篇
  1986年   38篇
  1985年   58篇
  1984年   40篇
  1983年   30篇
  1982年   30篇
  1981年   10篇
  1980年   19篇
  1979年   11篇
  1978年   8篇
  1977年   6篇
  1975年   4篇
  1951年   21篇
排序方式: 共有10000条查询结果,搜索用时 671 毫秒
81.
This paper reports the performance of porous Gd-doped ceria (GDC) electrochemical cells with Co metal in both electrodes (cell No. 1) and with Ni metal in the cathode and Co metal in the anode (cell No. 2) for CO2 decomposition, CH4 decomposition, and the dry reforming reaction of a biogas with CO2 gas (CH4 + CO2 → 2H2 + 2CO) or with O2 gas in air (3CH4 +?1.875CO2 +?1.314O2 → 6H2 +?4.875CO +?0.7515O2). GDC cell No. 1 produced H2 gas at formation rates of 0.055 and 0.33?mL-H2/(min?m2-electrode) per 1?mL-supplied gas/(min?m2-electrode) at 600?°C and 800?°C, respectively, by the reforming of the biogas with CO2 gas. Similarly, cell No. 2 produced H2 gas at formation rates of 0.40?mL-H2/(min?m2) per 1?mL-supplied gas/(min?m2) at 800?°C from a mixture of biogas and CO2 gas. The dry reforming of a real biogas with CO2 or O2 gas at 800?°C proceeded thermodynamically over the Co or Ni metal catalyst in the cathode of the porous GDC cell. Faraday's law controlled the dry reforming rate of the biogas at 600?°C in cell No. 2. This paper also clarifies the influence of carbon deposition, which originates from CH4 pyrolysis (CH4 → C + 2H2) and disproportionation of CO gas (2CO → C + CO2), on the cell performance during dry reforming. The dry reforming of a biogas with O2 molecules from air exhibits high durability because of the oxidation of the deposited carbon by supplied air.  相似文献   
82.
Biological environments use ions in charge transport for information transmission. The properties of mixed electronic and ionic conductivity in organic materials make them ideal candidates to transduce physiological information into electronically processable signals. A device proven to be highly successful in measuring such information is the organic electrochemical transistor (OECT). Previous electrophysiological measurements performed using OECTs show superior signal-to-noise ratios than electrodes at low frequencies. Subsequent development has significantly improved critical performance parameters such as transconductance and response time. Here, interdigitated-electrode OECTs are fabricated on flexible substrates, with one such state-of-the-art device achieving a peak transconductance of 139 mS with a 138 µs response time. The devices are implemented into an array with interconnects suitable for micro-electrocorticographic application and eight architecture variations are compared. The two best-performing arrays are subject to the full electrophysiological spectrum using prerecorded signals. With frequency filtering, kHz-scale frequencies with 10 µV-scale voltages are resolved. This is supported by a novel quantification of the noise, which compares the gate voltage input and drain current output. These results demonstrate that high-performance OECTs can resolve the full electrophysiological spectrum and suggest that superior signal-to-noise ratios could be achieved in high frequency measurements of multiunit activity.  相似文献   
83.
赖俊瑶  陈滢 《化学试剂》2020,42(2):186-192
研究了红糖、葡萄糖、乙酸钠、甲醇、乙醇、乙酸、丙酸、丁酸、正戊酸、混合有机溶剂等10种不同有机物对麝香草酚光谱法和离子色谱法测试硝酸盐氮的影响。结果表明,溶液中含有红糖或葡萄糖时,均会对麝香草酚法测试硝酸盐氮造成影响,使得测试结果偏大;在无硝酸根离子存在时,红糖和葡萄糖的质量浓度与硝酸盐氮的测试浓度非线性相关;而乙酸钠、甲醇、乙醇、乙酸、丙酸、丁酸、正戊酸和混合有机溶剂则对麝香草酚法测试硝酸盐氮没有影响。实验发现,红糖和葡萄糖在浓硫酸的作用下与麝香草酚发生Molisch反应,形成有色复合物和红棕色不溶性沉淀。实验采用离子色谱法测试硝酸盐氮时,红糖和葡萄糖等糖类有机物对测试结果均无影响。  相似文献   
84.
The airborne dynamics of respiratory droplets, and the transmission routes of pathogens embedded within them, are governed primarily by the diameter of the particles. These particles are composed of the fluid which lines the respiratory tract, and is primarily mucins and salts, which will interact with the atmosphere and evaporate to reach an equilibrium diameter. Measuring organic volume fraction (OVF) of cough aerosol has proved challenging due to large variability and low material volume produced after coughing. Here, the diametric hygroscopic growth factors (GF) of the cough aerosol produced by healthy participants were measured in situ using a rotating aerosol suspension chamber and a humidification tandem differential mobility analyser. Using hygroscopicity models, it was estimated that the average OVF in the evaporated cough aerosol was 0.88 ± 0.07 and the average GF at 90% relative humidity (RH) was 1.31 ± 0.03. To reach equilibrium in dry air the droplets will reduce in diameter by a factor of approximately 2.8 with an evaporation factor of 0.36 ± 0.05. Hysteresis was observed in cough aerosol at RH = ∼35% and RH = ∼65% for efflorescence and deliquescence, respectively, and may depend on the OVF. The same behaviour and GF were observed in nebulized bovine bronchoalveolar lavage fluid.  相似文献   
85.
Doped CeGdO and codoped CeGdOSmO compositions were synthesized, giving rise to nanoparticulate powders. Ionic conductivities at bulk and grain boundaries of the sintered samples were determined, exhibiting increased conductivity in the samaria-codoped samples. Scanning electron microscopy (SEM) showed a significant reduction in the grain size of samaria-codoped electrolytes. This reduced grain size of the codoped samples caused a reduction in Schottky barrier height, increasing oxygen vacancy concentration in the space-charge layer of the grain boundary and culminating in greater ionic conductivity in the boundary region. For the gadolinium doped samples, high resolution transmission electron microscopy images at grains showed the presence of large cluster of defects (nanodomains), hindering the movement of charge carriers and reducing ionic conductivity. However, the samaria-codoped system displayed better homogeneity at atomic level, resulting in reduced oxygen vacancy ordering and, consequently, smaller nanodomains and higher bulk (grain) conductivity. The reduced grain sizes and smaller nanodomains caused by codoping favor the ionic conductivity of ceria-based ceramics, doped with gadolinia and codoped with samaria.  相似文献   
86.
近年来,国内的大气污染问题越来越严重,挥发性有机物(VOCs)的排放是其中一个重要原因。VOCs是臭氧和气溶胶的前驱物之一,在大气化学反应过程中扮演着极其重要的角色。本实验自行研制了一台基于真空紫外(VUV)灯的高分辨光电离飞行时间质谱仪(TOF MS),建立了一种新的VOCs稀释采样方法,并将其应用于石化行业污水处理系统VOCs的采样与分析。结果表明:隔油系统的3个池子基本没有测到高浓度的挥发性有机物,其中溶气气浮甲苯物质的质量浓度最高,为50.41 mg/L,其余组分的质量浓度大多数在0.1~1.0 mg/L之间;1#加氢和2#加氢隔油池有着类似的组分浓度,以1#加氢隔油池为例,二甲苯物质的质量浓度为10.60 mg/L,乙苯为52.33 mg/L,苯为59.80 mg/L;由于罐区隔油池没有加盖,处于露天状态,挥发性有机物气体容易向大气中扩散,并没有检测出较高浓度组分。可以看出,新式采样方法可有效地稀释定量样品,操作简便,减少了样品因闪蒸过程造成的VOCs损失,检出物质更丰富;同时,使用自行研制的TOF MS仪器能够快速检测不同装置污水处理系统的VOCs种类,将该仪器用于实际样品检测,发现化工企业大多数密闭的池子都含有苯系物、醚类等,但不同工艺的污水处理系统VOCs存在明显差异。该质谱仪适用于石化企业污水系统VOCs监测。  相似文献   
87.
Over the past few decades, crystalline silicon solar cells have been extensively studied due to their high efficiency, high reliability, and low cost. In addition, these types of cells lead the industry and account for more than half of the market. For the foreseeable future, Si will still be a critical material for photovoltaic devices in the solar cell industry. In this paper, we discuss key issues, cell concepts, and the status of recent high-efficiency crystalline silicon solar cells.  相似文献   
88.
Understanding the sources and composition of organic aerosol (OA) in indoor environments requires rapid measurements, since many emissions and processes have short timescales. However, real-time molecular-level OA measurements have not been reported indoors. Here, we present quantitative measurements, at a time resolution of five seconds, of molecular ions corresponding to diverse aerosol-phase species, by applying extractive electrospray ionization mass spectrometry (EESI-MS) to indoor air analysis for the first time, as part of the highly instrumented HOMEChem field study. We demonstrate how the complex spectra of EESI-MS are screened in order to extract chemical information and investigate the possibility of interference from gas-phase semivolatile species. During experiments that simulated the Thanksgiving US holiday meal preparation, EESI-MS quantified multiple species, including fatty acids, carbohydrates, siloxanes, and phthalates. Intercomparisons with Aerosol Mass Spectrometer (AMS) and Scanning Mobility Particle Sizer suggest that EESI-MS quantified a large fraction of OA. Comparisons with FIGAERO-CIMS shows similar signal levels and good correlation, with a range of 100 for the relative sensitivities. Comparisons with SV-TAG for phthalates and with SV-TAG and AMS for total siloxanes also show strong correlation. EESI-MS observations can be used with gas-phase measurements to identify co-emitted gas- and aerosol-phase species, and this is demonstrated using complementary gas-phase PTR-MS observations.  相似文献   
89.
In this study, the decomposition of methanol into the CO and H species on the Pd/tungsten carbide (WC)(0001) surface is systematically investigated using periodic density functional theory (DFT) calculations. The possible reaction pathways and intermediates are determined. The results reveal that saturated molecules, i.e., methanol and formaldehyde, adsorb weakly on the Pd/ WC(0001) surface. Both CO and H prefer three-fold sites, with adsorption energies of −1.51 and −2.67 eV, respectively. On the other hand, CH3O stably binds at three-fold and bridge sites, with an adsorption energy of −2.58 eV. However, most of the other intermediates tend to adsorb to the surface with the carbon and oxygen atoms in their sp3 and hydroxyl-like configurations, respectively. Hence, the C atom of CH2OH preferentially attaches to the top sites, CHOH and CH2O adsorb at the bridge sites, while COH and CHO occupy the three-fold sites. The DFT calculations indicate that the rupture of the initial C–H bond promotes the decomposition of CH3OH and CH2OH, whereas in the case of CHOH, O–H bond scission is favored over the C–H bond rupture. Thus, the most probable methanol decomposition pathway on the Pd/WC(0001) surface is CH3OH → CH2OH → trans-CHOH → CHO → CO. The present study demonstrates that the synergistic effect of WC (as carrier) and Pd (as catalyst) alters the CH3OH decomposition pathway and reduces the noble metal utilization.  相似文献   
90.
Malic acid derived from fossil resources is currently applied in the food and beverage industries with a medium global production capacity. However, in the transition from a fossil-based to a bio-based economy, biotechnologically produced l -malic acid may become an important platform chemical with many new applications, especially in the field of biopolymers. In this review, currently used petrochemical production routes to dl -malic acid are outlined and insights into possible bio-based alternatives for microbial l -malic acid production are provided. Besides ecological reasons, the possibility to produce enantiopure l -malic acid by microbial fermentation is the biggest advantage over chemical synthesis. State-of-the-art and open challenges concerning production host engineering, substrate choice and downstream processing are addressed. With regard to production hosts, a literature overview is given covering the leading natural production strains of Aspergillus, Ustilago and Aureobasidium, as well as Escherichia coli as the most important engineered recombinant host. The utilization of renewable substrates as an alternative to glucose is emphasized in particular as a key aspect for a competitive bio-based production. Out of the alternative substrates discussed in this review, the industrial side-streams crude glycerol and molasses seem to be most promising for large-scale l -malic acid production. © 2019 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号