首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101674篇
  免费   9769篇
  国内免费   5039篇
电工技术   9511篇
技术理论   4篇
综合类   7292篇
化学工业   14671篇
金属工艺   8769篇
机械仪表   4916篇
建筑科学   9003篇
矿业工程   2337篇
能源动力   9733篇
轻工业   8666篇
水利工程   2855篇
石油天然气   4758篇
武器工业   829篇
无线电   7984篇
一般工业技术   10816篇
冶金工业   5585篇
原子能技术   1565篇
自动化技术   7188篇
  2024年   421篇
  2023年   1870篇
  2022年   3204篇
  2021年   3792篇
  2020年   3845篇
  2019年   3437篇
  2018年   2902篇
  2017年   3590篇
  2016年   3730篇
  2015年   3858篇
  2014年   6304篇
  2013年   6163篇
  2012年   7428篇
  2011年   7959篇
  2010年   5610篇
  2009年   5720篇
  2008年   5053篇
  2007年   6303篇
  2006年   5843篇
  2005年   4697篇
  2004年   4147篇
  2003年   3549篇
  2002年   2924篇
  2001年   2545篇
  2000年   2078篇
  1999年   1661篇
  1998年   1337篇
  1997年   1122篇
  1996年   1030篇
  1995年   792篇
  1994年   703篇
  1993年   497篇
  1992年   487篇
  1991年   387篇
  1990年   291篇
  1989年   205篇
  1988年   176篇
  1987年   121篇
  1986年   117篇
  1985年   118篇
  1984年   101篇
  1983年   71篇
  1982年   54篇
  1981年   55篇
  1980年   40篇
  1979年   31篇
  1977年   16篇
  1975年   18篇
  1974年   12篇
  1959年   16篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Additive doping is one of the effective methods to overcome the shortcomings of MgH2 on the aspect of relatively high operating temperatures and slow desorption kinetics. In this paper, hollow g-C3N4 (TCN) tubes with a diameter of 2 μm are synthesized through the hydrothermal and high-temperature pyrolysis methods, and then nickel is chemically reduced onto TCN to form Ni/TCN composite at 278 K. Ni/TCN is then introduced into the MgH2/Mg system by means of hydriding combustion and ball milling. The MgH2–Ni/TCN composite starts to release hydrogen at 535 K, which is 116 K lower than the as-milled MgH2 (651 K). The MgH2–Ni/TCN composite absorbs 5.24 wt% H2 within 3500 s at 423 K, and takes up 3.56 wt% H2 within 3500 s, even at a temperature as low as 373 K. The apparent activation energy (Ea) of the MgH2 decreases from 161.1 to 82.6 kJ/mol by the addition of Ni/TCN. Moreover, the MgH2–Ni/TCN sample shows excellent cycle stability, with a dehydrogenation capacity retention rate of 98.0% after 10 cycles. The carbon material enhances sorption kinetics by dispersing and stabilizating MgH2. Otherwise, the phase transformation between Mg2NiH4 and Mg2NiH0.3 accelerates the re/dehydrogenation reaction of the composite.  相似文献   
52.
Bromine-based flow batteries (Br-FBs) are considered one of the most promising energy storage systems due to their features of high energy density and low cost. However, they generally suffer from uncontrolled diffusion of corrosive bromine particularly at high temperatures. That is because the interaction between polybromide anions and the commonly used complexing agent (N–methyl–N–ethyl–pyrrolidinium bromide [MEP]) decreases with increasing temperatures, which causes serious self-discharge and capacity fade. Herein, a novel bromine complexing agent, 1–ethyl–2–methyl–pyridinium bromide (BCA), is introduced in Br-FBs to solve the above problems. It is proven that BCA can combine with polybromide anions very well even at a high temperature of 60 °C. Moreover, the BCA contributes to decreasing the electrochemical polarization of Br/Br2 couple, which in turn improves their power density. As a result, a zinc–bromine flow battery with BCA as the complexing agent can achieve a high energy efficiency of 84% at 40 mA cm−2, even at high temperature of 60 °C and it can stably run for more than 400 cycles without obvious performance decay. This paper provides an effective complexing agent to enable a wide temperature range Br-FB.  相似文献   
53.
Thermosetting materials are widely used as encapsulation in the electrical packaging to protect the core electronic components from external force, moisture, dust, and other factors. However, the spreading and curing behaviors of such kind of fluid on a heated surface have been rarely explored. In this study, we experimentally and numerically investigated the spreading and curing behaviors of the silicone(OE6550 A/B, which is widely used in the light-emitting diode packaging) droplet with diameter of ~2.2 mm on a heated surface with temperature ranging from 25 ℃ to 250 ℃. For the experiments, we established a setup with high-speed camera and heating unit to capture the fast spreading process of the silicone droplet on the heated surface. For the numerical simulation, we built a viscosity model of the silicone by using the Kiuna's model and combined the viscosity model with the Volume of Fluid(VOF) model by the User Defined Function(UDF) method. The results show that the surface temperature significantly affected the spreading behaviors of the silicone droplet since it determines the temperature and viscosity distribution inside the droplet. For surface temperature varied from 25 ℃ to 250 ℃, the final contact radius changed from ~2.95 mm to ~1.78 mm and the total spreading time changed from ~511 s to ~0.15 s. By further analyzing the viscosity evolution of the droplet, we found that the decreasing of the total spreading time was caused by the decrease of the viscosity under high surface temperature at initial spreading stage, while the reduction of the final contact radius was caused by the curing of the precursor film. This study supplies a strategy to tuning the spreading and curing behavior of silicone by imposing high surface temperature, which is of great importance to the electronic packaging.  相似文献   
54.
55.
This work aims to improve the existing monitoring systems MS for two grid-connected PV stations GCPVS of URERMS ADRAR, to eliminate its limitations. This improvement consists of developing an MS which is used for two PV stations with different configurations. This MS contains new LabVIEW-based monitoring software for visualizing real-time measured data and evaluating GCPVS performance. In addition, it illustrates the 2D and 3D real-time relationships of PV system parameters, which allow us to understand the dynamic behavior of PV system components. This developed monitoring software synchronizes also the various data acquisition units DAU of GCPVS, allowing simultaneous data access.To perform a reliable performance analysis and a comparative study of different GCPVS based on accurate measurements, the sensor's calibration is performed with its DAU. The MS autonomy is ensured by integrating developed PV-UPS. A graphical user interface is provided for the evaluation of PV-UPS performance.  相似文献   
56.
针对气藏型储气库注采井注采过程中储层物性参数影响因素不明确、注采能力不对称的问题。基于相国寺储气库井下连续油管试井测试结果,提出储气库注气期“温降效应”、“变表皮效应”的概念,分析了储气库注采过程中温降效应、变表皮效应以及储层应力敏感对注采的影响。通过气藏型储气库注气期试井分析技术,研究各因素在试井曲线上的响应特征以及对试井解释参数的影响。结果表明:①相对于采气期试井测试,注气期测试得到的储层物性参数具有同样的参考价值;②储气库温降效应对于试井解释结果的影响可忽略不计,而在不同注采运行周期内,变表皮效应以及应力敏感效应影响差异较大;③编制储气库注采运行方案时应充分考虑变表皮效应与应力敏感的影响,在不同注采运行周期内开展试井测试获取准确的储层参数值。研究成果为储气库试井测试与解释提供了重要的研究依据和理论指导。  相似文献   
57.
《Ceramics International》2022,48(13):18278-18285
We report the improved energy storage density and efficiency after 2.5% of Samarium substitution in ferroelectric Pb[(Mg1/3Nb2/3)0.80Ti0.20]O3 (PMNT) electroceramic. The microstructure and surface morphology were analyzed and correlated with various functional properties. The energy storage density, leakage current density, ferroelectric and dielectric properties were investigated thoroughly, indicating that Samarium's substitution significantly modified the microstructure, the dielectric strength, breakdown electric field, and turned ferroelectric PMNT to relaxor ferroelectrics. Due to the relaxor nature, the gap between remanent polarization and maximum polarization increases with the substitution of Samarium in PMNT matrix, which further increases the recoverable energy storage density and energy efficiency. A nearly 100% increase in recoverable energy density and efficiency was obtained at an electric field strength of 35 kV/cm at room temperature (~296 K). The electroceramic shows maximum energy density near the ferroelectric phase transition temperature (325 K–345 K) region and provides a moderate energy storage density for possible applications in power microelectronics.  相似文献   
58.
《Ceramics International》2022,48(2):1889-1897
SiC fiber reinforced ceramic matrix composites (SiCf-CMCs) are considered to be one of the most promising materials in the electromagnetic (EM) stealth of aero-engines, which is expected to achieve strong absorption and broad-band performance. Multiscale structural design was applied to SiCf/Si3N4–SiOC composites by construction of micro/nanoscale heterogeneous interfaces and macro double-layer impedance matching structure. SiCf/Si3N4–SiOC composites were fabricated by using SiC fibers with different conductivities and SiOC–Si3N4 matrices with gradient impedance structures to improve impedance matching effectively. Owing to its unique structure, SiCf/Si3N4–SiOC composites (A3-composites) achieved excellent EM wave absorption performance with a minimum reflection coefficient (RCmin) of ?25.1 dB at 2.45 mm and an effective absorption bandwidth (EAB) of 4.0 GHz at 2.85 mm in X-band. Moreover, double-layer SiCf/Si3N4–SiOC with an improved impedance matching structure obtained an RCmin of ?56.9 dB and an EAB of 4.2 GHz at 3.00 mm, which means it can absorb more than 90% of the EM waves in the whole X-band. The RC is less than ?8 dB at 2.6–2.8 mm from RT to 600 °C in the whole X-band, displaying excellent high-temperature absorption performance. The results provide a new design opinion for broad-band EM absorbing SiCf-CMCs at high temperatures.  相似文献   
59.
This study investigates the ability of hydrogen (H2) to wet clay surfaces in the presence of brine, with implications for underground hydrogen storage in clay-containing reservoirs. Rather than measuring contact angles directly with hydrogen gas, a suite of other gases (carbon dioxide (CO2), argon (Ar), nitrogen (N2), and helium (He)) were employed in the gas-brine-clay system under storage conditions (moderate temperature (333 K) and high pressures (5, 10, 15, and 20 MPa)), characteristic of a subsurface environment with a shallow geothermal gradient. By virtue of analogies to H2 and empirical correlations, wettabilities of hydrogen on three clay surfaces were mathematically derived and interpreted. The three clays were kaolinite, illite, and montmorillonite and represent 1:1, 2:1 non-expansive, and 2:1 expansive clay groups, respectively. All clays showed water-wetting behaviour with contact angles below 40° under all experimental set-ups. It follows that the presence of clays in the reservoir (or caprock) is conducive to capillary and/or residual trapping of the gas. Another positive inference is that any tested gas, particularly nitrogen, is suitable as cushion gas to maintain formation pressure during hydrogen storage because they all turned out to be more gas-wetting than hydrogen on the clay surfaces; this allows easier displacement and/or retrieval of hydrogen during injection/production. One downside of the predominant water wettability of the clays is the upstaged role of biogeochemical reactions at the wetted brine-clay/silicate interface and their potential to affect porosity and permeability. Water-wetting decreased from kaolinite as most water-wetting clay over illite to montmorillonite as most hydrogen-wetting clay. Their wetting behaviour is consistent with molecular dynamic modelling that establishes that the accessible basal plane of kaolinite's octahedral sheet is highly hydrophilic and enables strong hydrogen bonds whereas the same octahedral sheet in illite and montmorillonite is not accessible to the brine, rendering these clays less water-wetting.  相似文献   
60.
This study aimed to know the effect of adding pulp in rambutan fruit juice on the characteristics of rambutan juice during storage. Research using the CRD, the treatment were kind of pulp (mandarin and rambutan) and pulp concentration (5%, 7.5%, and 10%). The results showed that the addition of pulp significantly affect the characteristics of rambutan juice (pH, vitamin C, total acid) during storage. Pulpy juice with the most prefered was addition of rambutan pulp as much as 7.5% (w/v) and the addition of citrus pulp as much as 7.5% (w/v) with the score of 3-4 (moderate like - like).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号