首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11686篇
  免费   1518篇
  国内免费   612篇
电工技术   423篇
综合类   582篇
化学工业   3475篇
金属工艺   719篇
机械仪表   275篇
建筑科学   443篇
矿业工程   304篇
能源动力   541篇
轻工业   1216篇
水利工程   183篇
石油天然气   528篇
武器工业   47篇
无线电   982篇
一般工业技术   2045篇
冶金工业   1491篇
原子能技术   193篇
自动化技术   369篇
  2024年   28篇
  2023年   460篇
  2022年   340篇
  2021年   599篇
  2020年   529篇
  2019年   485篇
  2018年   415篇
  2017年   510篇
  2016年   530篇
  2015年   429篇
  2014年   656篇
  2013年   764篇
  2012年   728篇
  2011年   799篇
  2010年   522篇
  2009年   566篇
  2008年   454篇
  2007年   589篇
  2006年   616篇
  2005年   521篇
  2004年   450篇
  2003年   408篇
  2002年   337篇
  2001年   316篇
  2000年   244篇
  1999年   220篇
  1998年   200篇
  1997年   156篇
  1996年   140篇
  1995年   125篇
  1994年   107篇
  1993年   96篇
  1992年   96篇
  1991年   78篇
  1990年   45篇
  1989年   39篇
  1988年   37篇
  1987年   16篇
  1986年   26篇
  1985年   25篇
  1984年   26篇
  1983年   13篇
  1982年   10篇
  1981年   8篇
  1980年   9篇
  1978年   5篇
  1977年   7篇
  1976年   8篇
  1975年   8篇
  1951年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
采用高温淬火方法制备了Tc在27.4K至92.4K之间的一组不同氧含量的PMP(粉末熔融工艺)法YBCO超导体。通过对这些超导体样品的磁滞回线及不可逆线的研究发现,随着氧空位的增加,超导体的磁通钉扎力减小  相似文献   
102.
杂原子掺杂碳基氧还原(ORR)催化剂具有代替Pt基催化剂的巨大潜力。以硫掺杂g-C3N4(S-doped g-C3N4, S-g-C3N4)作为硫源和氮源,以三嵌段共聚物P123作为碳源,通过简单的高温热解法成功制备了N、S共掺杂碳(N, S co-doped carbon, NSC)催化剂,并考察了热解温度对制备的NSC催化剂ORR性能的影响。材料表征结果显示:温度为1 000 ℃时制备的催化剂NSC-1000具有较高的氮含量和硫含量及最大的比表面积;电化学测试结果显示:NSC-1000具有最佳的ORR性能,在0.1 mol/L KOH溶液中半波电位(half-wave potential, E1/2)高达0.888 V,且经10 000圈循环伏安扫描后E1/2仅负移12 mV,表现出极佳的活性和稳定性。此外,旋转环盘电极测试结果显示:NSC-1000催化剂主要以四电子反应路径催化ORR的发生。本实验为制备N、S共掺杂碳基高效ORR催化剂提供了新的思路。  相似文献   
103.
The low cost and highly efficient construction of electrocatalysts has attracted significant attention owing to the use of clean and sustainable energy technologies. In this work, cobalt nanoparticle decorated N-doped carbons (Co@NC) are synthesized by the pyrolysis of a cobalt covalent organic framework under an inert atmosphere. The Co@NC demonstrates improved electrocatalytic capabilities compared to N-doped carbon without the addition of Co nanoparticles, indicating the important role of cobalt. The well-dispersed active sites (Co–Nx) and the synergistic effect between the carbon matrix and Co nanoparticles greatly enhance the electrocatalytic activity for the oxygen reduction reaction. In addition, the Co content has a significant effect on the catalytic activity. The resulting Co@NC-0.86 exhibits a superb electrocatalytic activity for the oxygen reduction reaction in an alkaline electrolyte in terms of the onset potential (0.90 V), half-wave potential (0.80 V) and the limiting current density (4.84 mA·cm–2), and a high selectivity, as well as a strong methanol tolerance and superior durability, these results are comparable to those of the Pt/C catalyst. Furthermore, the superior bifunctional activity of Co@NC-0.86 was also confirmed in a home-built Zn-air battery, signifying the possibility for application in electrode materials and in current energy conversion and storage devices.  相似文献   
104.
某电厂350 MW直接空冷机组检修后存在低负荷运行期间溶氧升高、高负荷运行期间溶氧正常的异常现象。从数据分析、现场调整等方面查找原因,分析得出异常现象是机组真空冷却器底部回水管道不畅所导致,并给出了相应的解决措施,为类似机组提供参考。  相似文献   
105.
Chemical looping gasification (CLG) of Ningdong coal by using Fe2O3 as the oxygen carriers (OCs) was studied, and the gasification characteristics were obtained. A computation fluid dynamics (CFD) model based on Eulerian‐-Lagrangian multiphase framework was established, and a numerical simulation the coal chemical looping gasification processes in fuel reactor (FR) was investigated. In addition, the heterogeneous reactions, homogeneous reactions and Fe2O3 oxygen carriers' reduction reactions were considered in the gasification process. The characteristics of gas flow and gasification in the FR were analyzed and it was found that the experiment results were consistent with the simulation values. The results show that when the O/C mole rate was 0.5:1, the gasification temperature was 900 ℃ and the water vapor volume flow rate was 2.2 ml·min-1, the mole fraction of syngas reached a maximum value of the experimental result and simulation value were 71.5% and 70.2%, respectively. When the O/C mole rate was 0.5:1, the gasification temperature was 900 ℃, and the water vapor volume flow was 1.8 ml·min-1; the gasification efficiency reached the maximum value was 62.2%, and the maximum carbon conversion rate was 84.0%.  相似文献   
106.
In the chemical looping with oxygen uncoupling (CLOU) process,CuO is a promising material due to the high oxygen carrier capacity and exothermic reaction in fuel reactor but limited by the low melting point.The combustion rate of carbon is faster than the decoupling rate of oxygen carrier (OC).Hence,high tem-perature tolerance and rapid oxygen release rate of CuO modified by three different ores were investi-gated in this study.The kinetics analysis of oxygen decoupling with Cu-based oxygen carriers was also evaluated.Results showed that CuO modified by chrysolite had faster oxygen release rate than that of CuO.Limestone showed obvious positive effect on the oxidization process.The selected OCs could keep stable in at least 20 cycles,for about 1200 min.Shrinking core model (SCM) fitted well for the decoupling process in the temperature range of 1123-1223 K.Reduction rate kinetic information may aid in the development of chemical looping with oxygen uncoupling (CLOU) technologies during reactor design and process modeling.Ternary doped copper oxide with chrysolite and limestone could improve the reactivity of CuO in decoupling and coupling process and also improve the high temperature tolerance.  相似文献   
107.
采用一种简单易行的共沉淀法合成了前驱体镍铁普鲁士蓝类似物NiFe-PBA(NF),然后通过溶剂热处理获得了镍铁普鲁士蓝纳米多孔材料(NFP)。通过XRD、SEM、TEM、XPS、BET及电化学方法对所得材料进行了结构表征和析氧性能测试。结果表明,NFP相对于前驱体NF,电化学比表面积增大、催化活性位点增多,电催化析氧反应(OER)性能显著提高。在浓度1 mol/L KOH水溶液中,达到10 mA/cm2电流密度时,NFP所需过电位仅为260 mV,比NF(320 mV)前驱体低18.75%,也优于大多数已报道的非贵金属催化剂和商用贵金属催化剂,显示出良好的应用前景。  相似文献   
108.
Disulfiram (DSF), an irreversible aldehyde dehydrogenase inhibitor, is being used in anticancer therapy, as its effects in humans are known and less adverse than conventional chemotherapy. We explored the potential mechanism behind the cytotoxicity of DSF-Cu+/Cu2+ complexes in oral epidermoid carcinoma meng-1 (OECM-1) and human gingival epithelial Smulow-Glickman (SG) cells. Exposure to CuCl2 or CuCl slightly but concentration-dependently decreased cell viability, while DSF-Cu+/Cu2+ induced cell death in OECM-1 cells, but not SG cells. DSF-Cu+/Cu2+ also increased the subG1 population and decreased the G1, S, and G2/M populations in OECM-1 cells, but not SG cells, and suppressed cell proliferation in both OECM-1 and SG cells. ALDH enzyme activity was inhibited by CuCl and DSF-Cu+/Cu2+ in SG cells, but not OECM-1 cells. ROS levels and cellular senescence were increased in DSF-Cu+/Cu2+-treated OECM-1 cells, whereas they were suppressed in SG cells. DSF-Cu+/Cu2+ induced mitochondrial fission in OECM-1 cells and reduced mitochondrial membrane potential. CuCl2 increased but DSF- Cu2+ impaired oxygen consumption rates and extracellular acidification rates in OECM-1 cells. CuCl2 stabilized HIF-1α expression under normoxia in OECM-1 cells, and complex with DSF enhanced that effect. Levels of c-Myc protein and its phosphorylation at Tyr58 and Ser62 were increased, while levels of the N-terminal truncated form (Myc-nick) were decreased in DSF-Cu+/Cu2-treated OECM-1 cells. These effects were all suppressed by pretreatment with the ROS scavenger NAC. Overexpression of c-Myc failed to induce HIF-1α expression. These findings provide novel insight into the potential application of DSF-CuCl2 complex as a repurposed agent for OSCC cancer therapy.  相似文献   
109.
The Na/K-ATPase is the specific receptor for cardiotonic steroids (CTS) such as ouabain and digoxin. At pharmacological concentrations used in the treatment of cardiac conditions, CTS inhibit the ion-pumping function of Na/K-ATPase. At much lower concentrations, in the range of those reported for endogenous CTS in the blood, they stimulate hypertrophic growth of cultured cardiac myocytes through initiation of a Na/K-ATPase-mediated and reactive oxygen species (ROS)-dependent signaling. To examine a possible effect of endogenous concentrations of CTS on cardiac structure and function in vivo, we compared mice expressing the naturally resistant Na/K-ATPase α1 and age-matched mice genetically engineered to express a mutated Na/K-ATPase α1 with high affinity for CTS. In this model, total cardiac Na/K-ATPase activity, α1, α2, and β1 protein content remained unchanged, and the cardiac Na/K-ATPase dose–response curve to ouabain shifted to the left as expected. In males aged 3–6 months, increased α1 sensitivity to CTS resulted in a significant increase in cardiac carbonylated protein content, suggesting that ROS production was elevated. A moderate but significant increase of about 15% of the heart-weight-to-tibia-length ratio accompanied by an increase in the myocyte cross-sectional area was detected. Echocardiographic analyses did not reveal any change in cardiac function, and there was no fibrosis or re-expression of the fetal gene program. RNA sequencing analysis indicated that pathways related to energy metabolism were upregulated, while those related to extracellular matrix organization were downregulated. Consistent with a functional role of the latter, an angiotensin-II challenge that triggered fibrosis in the α1r/rα2s/s mouse failed to do so in the α1s/sα2s/s. Taken together, these results are indicative of a link between circulating CTS, Na/K-ATPase α1, ROS, and physiological cardiac hypertrophy in mice under baseline laboratory conditions.  相似文献   
110.
Metabolically active gasotransmitters (nitric oxide, carbon monoxide and hydrogen sulfide) are important signalling molecules that show therapeutic utility in oxidative pathologies. The reduced form of selenium, hydrogen selenide (HSe/H2Se), shares some characteristics with these molecules. The simple selenide salt, sodium hydroselenide (NaHSe) showed significant metabolic activity, dose-dependently decreasing ex vivo O2 consumption (rat soleus muscle, liver) and transiently inhibiting mitochondrial cytochrome C oxidase (liver, heart). Pharmacological manipulation of selenoprotein expression in HepG2 human hepatocytes revealed that the oxidation status of selenium impacts on protein expression; reduced selenide (NaHSe) increased, whereas (oxidized) sodium selenite decreased the abundance of two ubiquitous selenoproteins. An inhibitor of endogenous sulfide production (DL-propargylglycine; PAG) also reduced selenoprotein expression; this was reversed by exogenous NaHSe, but not sodium hydrosulfide (NaHS). NaHSe also conferred cytoprotection against an oxidative challenge (H2O2), and this was associated with an increase in mitochondrial membrane potential. Anesthetized Wistar rats receiving intravenous NaHSe exhibited significant bradycardia, metabolic acidosis and hyperlactataemia. In summary, NaHSe modulates metabolism by inhibition of cytochrome C oxidase. Modification of selenoprotein expression revealed the importance of oxidation status of selenium therapies, with implications for current clinical practice. The utility of NaHSe as a research tool and putative therapeutic is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号