首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4153篇
  免费   328篇
  国内免费   141篇
电工技术   94篇
综合类   210篇
化学工业   714篇
金属工艺   1707篇
机械仪表   239篇
建筑科学   164篇
矿业工程   158篇
能源动力   73篇
轻工业   78篇
水利工程   34篇
石油天然气   43篇
武器工业   35篇
无线电   55篇
一般工业技术   592篇
冶金工业   372篇
原子能技术   16篇
自动化技术   38篇
  2024年   24篇
  2023年   90篇
  2022年   111篇
  2021年   123篇
  2020年   124篇
  2019年   107篇
  2018年   100篇
  2017年   132篇
  2016年   128篇
  2015年   100篇
  2014年   195篇
  2013年   180篇
  2012年   271篇
  2011年   294篇
  2010年   264篇
  2009年   242篇
  2008年   229篇
  2007年   277篇
  2006年   299篇
  2005年   223篇
  2004年   222篇
  2003年   160篇
  2002年   151篇
  2001年   122篇
  2000年   118篇
  1999年   83篇
  1998年   53篇
  1997年   49篇
  1996年   43篇
  1995年   26篇
  1994年   22篇
  1993年   15篇
  1992年   17篇
  1991年   9篇
  1990年   5篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1959年   1篇
排序方式: 共有4622条查询结果,搜索用时 31 毫秒
21.
The deposition of copper by cold gas dynamic spraying has attracted much interest in recent years due to the capability to deposit low-porosity oxide-free coatings. However, it is generally found that as-deposited copper has a signicantly greater hardness, and potentially lower ductility, than bulk material. In this article, copper was deposited by cold spraying using helium as the driving gas at both 298 and 523 K. Evidence is presented indicating that the material sprayed at the lower temperature exhibits a lower dislocation density throughout the grain structure than the material sprayed at the higher temperature. The low stacking fault energy of copper restricts recovery during annealing, and thus microstructural changes during annealing only proceed once recrystallization begins. The material sprayed at low temperature (with the low dislocation density) exhibited recrystallization at annealing temperatures as low as 373 K with a corresponding reduction in hardness. However, the copper sprayed with helium at 523 K was resistant to annealing at temperatures up to 473 K where the dislocations in the structure prevented recrystallization. However, at higher temperatures, recrystallization did proceed (with corresponding reductions in hardness). The fracture behavior of the copper that was cold sprayed with helium at 523 K, both in the as-sprayed condition and following annealing, was measured and explained in terms of the annealing mechanisms proposed. The original version of this paper was published in the CD ROM Thermal Spray Connects: Explore Its Surfacing Potential, International Thermal Spray Conference, sponsored by DVS, ASM International, and HW International Institute of Welding, Basel, Switzerland, May 2–4, 2005, DVS-Verlag GmbH, Düsseldorf, Germany.  相似文献   
22.
Several studies have been undertaken recently to adapt yttria partially stabilized zirconia (YPSZ) thermal barrier coating (TBC) characteristics during their manufacturing process. Thermal spraying implementing laser irradiation appears to be a possibility for modifying the coating morphology. This study aims to present the results of in situ (i.e., simultaneous treatment) and a posteriori (i.e., post-treatment) laser treatments implementing a high-power laser diode. In both cases, the coatings underwent atmospheric plasma spraying (APS). Laser irradiation was achieved using a 3 kW, average-power laser diode exhibiting an 848 nm wavelength. Experiments were performed to reach two goals. First, laser post-treatments aimed at building a map of the laser-processing parameter effects on the coating microstructure to estimate the laser-processing parameters, which seem to be suited to the change into in situ coating remelting. Second, in situ coating remelting aimed at quantifying the involved phenomena. In that case, the coating was treated layer by layer as it was manufactured. The input energy effect was studied by varying the scanning velocity (i.e., between 35 and 60 m/min), and consequently the irradiation time (i.e., between 1.8 and 3.1 ms, respectively). Experiments showed that coating thermal conductivity was lowered by more than 20% and that coating resistance to isothermal shocks was increased very significantly.  相似文献   
23.
The microstructural features of cold-sprayed coatings were investigated using Cu, Ti and Zn feedstocks by optical microscopy, scanning electron microscopy and transmission electron microscopy to reveal the microstructure evolution mechanisms in cold spray. Four typical effects including tamping, refinement, impact-induced fusion and annealing were examined on microstrueture. It is found that the microstructure of cold spray coating is remarkably influenced by spray materials. Ti coatings consist of evident porous layer and Cu coatings present a limited porous layer only near the surface. It is clear that the successive tamping effect and dynamic refinement of grains significantly influence the microstructure evolution of cold-sprayed coating. The tamping effect leads to the densification of porous coating layer gradually and the refinement effect leads to the formation of fine microstructure. It is considered that the large difference in the formation of porous layer is attributed to the dynamic impact pressure and hardenability of materials. It is also found that the impact-induced fusion during deposition of Zn coating can also modify the interfacial microstructure between particles in cold spray coating. Moreover, the nanocrystalline phase can be formed at the interfaces among particles resulting from the localized melting of the interfaces and tamping effect. Furthermore, the annealing treatment can modify the microstructure and property of a cold-sprayed coating.  相似文献   
24.
本文对比分析了四种不同粘结剂制备的镍铬铁铝氮化硼复合粉末及涂层性能, 结果表明: A3 粘结剂的固 化性能和热降解性能与镍铬铁铝氮化硼复合粉末的粉末制备工艺及喷涂工艺匹配性良好, 制备的复合粉末的形貌 和性能较优, 以此制备的封严涂层组织均匀, 硬度为 62 HR15Y, 结合强度为 7.99 MPa, 耐盐浴腐蚀性能良好。  相似文献   
25.
等离子喷涂技术现状及发展   总被引:11,自引:0,他引:11  
从等离子喷涂设备、等离子喷涂过程中的测量技术及等离子喷涂技术的应用等几个方面综合分析了近年来等离子喷涂技术的研究现状和发展概况,指出了等离子喷涂技术的发展方向.  相似文献   
26.
Aluminum powder of 99.7 wt.% purity and in the nominal particle size range of −75+15 μm has been sprayed onto a range of substrates by cold gas dynamic spraying (cold spraying) with helium, at room temperature, as the accelerating gas. The substrates examined include metals with a range of hardness, polymers, and ceramics. The substrate surfaces had low roughness (R a < 0.1 μm) before deposition of aluminum in an attempt to separate effects of mechanical bonding from other forms of bonding, such as chemical or metallurgical bonding. The cross-sectional area of a single track of aluminum sprayed onto the substrate was taken as a measure of the ease of initiation of deposition, assuming that once a coating had begun to deposit onto a substrate, its growth would occur at a constant rate regardless of substrate type. It has been shown that initiation of deposition depends critically upon substrate type. For metals where initiation was not easy, small aluminum particles were deposited preferentially to large ones (due to their higher impact velocities); these may have acted as an interlayer to promote further building of the coating. A number of phenomena have been observed following spraying onto various substrates, such as substrate melting, substrate and particle deformation, and evidence for the formation of a metal-jet (akin to that seen in explosive welding). Such phenomena have been related to the processes occurring during impact of the particles on the substrate. Generally, initiation of aluminum deposition was poor for nonmetallic materials (where no metallic bonding between the particle and substrate was possible) and for very soft metals (in the case of tin, melting of the substrate was observed). Metallic substrates harder than the aluminum particles generally promoted deposition, although deposition onto aluminum alloy was difficult due to the presence of a tenacious oxide layer. Initiation was seen to be rapid on hard metallic substrates, even when deformation of the substrate was not visible. The original version of this article was published as part of the ASM Proceedings, Thermal Spray 2003: Advancing the Sciences and Applying the Technology, International Thermal Spray Conference (Orlando, FL), May 5–8, 2003, Basil R. Marple and Christian Moreau, Ed., ASM International, 2003.  相似文献   
27.
采用超音速电弧喷涂设备在不同工艺参数条件下制备JCW-S-AM涂层,利用显微硬度计测定各种涂层的显微硬度.根据测试结果,运用GA-BP算法构建涂层显微硬度与喷涂电压、喷涂电流的关系模型并进行工艺参数优化.研究结果表明:喷涂电压和喷涂电流对涂层显微硬度均有影响,呈现非线性规律,并且电压和电流之间存在交互作用;通过遗传算法优化,获得的最佳喷涂工艺参数为:喷涂电压29V,电流200A.此时JCW-S-AM涂层显微硬度最大.  相似文献   
28.
THERMAL SPRAYING provides a large range ofcoatings,which increase the wear resistance ofsubstrates[1].One of the major coating families is thecermet,composed of hard ceramic particles with ametallic binder.The most commonly used cermetcoatings in industrial applications are based on eitherthe WC-Co or the Cr3C2-Ni(Cr)systems with WC-17wt%Co and Cr3C2-25wt%Ni(Cr)being typicalcompositions[2,3].Although WC-Co deposits are hardand wear resistant at ambient temperatures their rangeof ap…  相似文献   
29.
High strength in combination with low density is the key features for lightweight constructions in automotive and aerospace applications. Tailor-made fiber reinforcements in light-metal matrices could help to achieve this goal. However, the integration of fibers with conventional casting-route manufacturing techniques like squeeze casting or diffusion bonding restricts the component geometry and results in elevated process cost due to long cycle times and the need of additional fiber coatings. In the center of competence for casting and thixoforging Stuttgart (CCT), new processes for manufacturing metal matrix composites are developed. Long-fiber reinforced Al–Si alloys and components are produced by thixoforging of laminates made of alternating metal matrix layers and carbon fiber fabrics. This paper illustrates the manufacturing technology and first experimental results with special focus on fiber penetration and infiltration behavior and also on the formation of fiber-matrix interface to analyze fiber damage by mechanical or chemical attack.  相似文献   
30.
研究了Ni-Cr-B-Si合金粉末等离子喷涂层的高温抗氧化性能、耐磨性、热稳定性,并介绍了其在连杆毛坯滚锻模上的应用.结果表明,这种涂层的某些高温性能大大优于5CrNiMo钢,在冲击载荷不大的场合,可以作为热锻模的强化方法.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号