首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   750篇
  免费   147篇
  国内免费   26篇
电工技术   27篇
综合类   16篇
化学工业   438篇
机械仪表   1篇
建筑科学   1篇
矿业工程   11篇
能源动力   164篇
轻工业   3篇
石油天然气   225篇
无线电   1篇
一般工业技术   17篇
冶金工业   12篇
原子能技术   2篇
自动化技术   5篇
  2023年   18篇
  2022年   36篇
  2021年   31篇
  2020年   42篇
  2019年   44篇
  2018年   35篇
  2017年   18篇
  2016年   52篇
  2015年   31篇
  2014年   44篇
  2013年   49篇
  2012年   56篇
  2011年   65篇
  2010年   47篇
  2009年   59篇
  2008年   38篇
  2007年   23篇
  2006年   34篇
  2005年   22篇
  2004年   21篇
  2003年   21篇
  2002年   20篇
  2001年   15篇
  2000年   13篇
  1999年   15篇
  1998年   14篇
  1997年   12篇
  1996年   13篇
  1995年   14篇
  1994年   5篇
  1993年   6篇
  1990年   3篇
  1989年   1篇
  1951年   6篇
排序方式: 共有923条查询结果,搜索用时 15 毫秒
91.
A method for producing buta-1,3-diene (1,3-BD) by an amalgamation of chemical and biological approaches with syngas as the carbon source is proposed. Syngas is converted to the central intermediate, acetyl-CoA, by microorganisms through a tetrahydrofolate metabolism pathway. Acetyl-CoA is subsequently converted to malonyl-CoA using a carbonyl donor in the presence of a carboxylase enzyme. A decarboxylative Claisen condensation of malonyl-CoA and acetaldehyde ensues in the presence of acyltransferases to form 3-hydroxybutyryl-CoA, which is subsequently reduced by aldehyde reductase to give butane-1,3-diol (1,3-BDO). An ensuing dehydration step converts 1,3-BDO to 1,3-BD in the presence of a chemical dehydrating reagent.  相似文献   
92.
Strontium ferrite (SrFeO3-δ) is a very attractive oxygen transfer agent for chemical looping reactions and hydrogen-rich syngas generation. Dispersing SrFeO3 in a medium such as Ca0.5Mn0.5O could enhance the activity and cyclability. In this study, SrFeO3-δ-Ca0.5Mn0.5O (30 wt% SrFeO3-δ) nanocomposite with a reticulated foam structure was explored as the oxygen carrier for chemical looping reforming of methane in a solar tubular reactor. The foam nanocomposite was prepared by a hard-templating method. The performance was investigated at temperatures of 850–1000 °C and methane flowrates of 25–250 STP mL/min, and the oxidative gas was either CO2 or H2O in the oxidation step. In the reduction step of 27 successive redox cycles, the production rate of CO changed marginally and CO yield maintained at about 1.9 mmol/g, even though sintering occurred. The productivity of H2 decreased first and then tended to be stable at 3.8 mmol/g (i.e., twice the CO yield) as the cycling number increased (the average oxygen storage capacity of the material was ~1.95 mmol/g). Microscopic and X-ray diffraction investigations suggested that the element distribution pattern and crystalline phase of the foam nanocomposite remained almost unchanged after 27 redox cycles, confirming material stability. The maximum solar-to-fuel efficiency for the foam nanocomposite was 5.68%, which was 21.4% higher than that for the powder nanocomposite. To increase syngas productivity and solar-to-fuel efficiency, it is required to conduct the reforming reaction at high temperatures and methane flowrates. However, the energy upgrade factor will decrease as methane flowrate increases.  相似文献   
93.
94.
Reversible solid oxide fuel cells (rSOFCs) may be applied to store and generate electrical energy in a reversible mode. This technique is promising to balance the conflict between intermittent power supply and demand in a sustainable way. One of the limitations of the development of rSOFCs is the high cost of storage and usage of pure H2, which may be solved by employing syngas as the fuel. The performance of rSOFCs depends on the development of bifunctional materials, cell design, and operation optimization, which are often investigated and predicted by the cost‐effective approach of mathematical modeling. However, the modeling of dual‐mode rSOFCs involving co‐redox reactions with syngas is not well developed. In this study, a two‐dimensional (2D) single‐channel model of an rSOFC is developed. The novelty of this model is that the multiphysics transport processes are fully coupled and solved with the reversible water‐gas shift reaction with syngas and the electrochemical reactions. The effects of the operating conditions and design parameters (eg, electrode thickness) are considered, with the aim of providing guidelines to optimize the design and operation of reversible cells. It is concluded that the thickness of the electrode has a larger impact on the water‐gas shift reaction than on the electrochemical reaction in both the gas diffusion and reaction regions. The C/H element ratio of syngas has a negative correlation with power output, but the distributions of current and gas species may be improved in both modes. A higher operating temperature improves the performance in both modes but has a more substantial effect in the electrolysis mode. The specific design and operating schemes favored in different modes should be balanced in the reversible mode.  相似文献   
95.
甲烷和富氧空气催化氧化制合成气   总被引:5,自引:1,他引:4  
采用固定床流动反应装置,考察了3种不同氧化气氛下甲烷催化氧化制合成气的反应性能。在空速为5×105h-1、CH4/O2=2.0、外控温度为800℃时,富氧空气(34.5%O2+65.5%N2)具有和100%O2气氛基本接近的反应性能,而且用空气或富氧空气取代纯氧明显减轻了催化剂床层的“热点”现象。针对富氧空气(34.5%O2+65.5%N2),考察了空速对反应性能的影响。结果表明,空速在3×105~8×105h-1范围内CH4转化率>90%,CO选择性>90%,H2选择性接近100%;合成气中(H2+CO)/N2比值接近3.0,CO经水蒸汽变换后得H2/N2比值接近3.0,基本满足合成氨的要求  相似文献   
96.
Direct photoconversion of low‐concentration CO2 into a widely tunable syngas (i.e., CO/H2 mixture) provides a feasible outlet for the high value‐added utilization of anthropogenic CO2. However, in the low‐concentration CO2 photoreduction system, it remains a huge challenge to screen appropriate catalysts for efficient CO and H2 production, respectively, and provide a facile parameter to tune the CO/H2 ratio in a wide range. Herein, by engineering the metal sites on the covalent organic frameworks matrix, low‐concentration CO2 can be efficiently photoconverted into tunable syngas, whose CO/H2 ratio (1:19–9:1) is obviously wider than reported systems. Experiments and density functional theory calculations indicate that Fe sites serve as the H2 evolution sites due to the much stronger binding affinity to H2O, while Ni sites act as the CO production sites for the higher affinity to CO2. Notably, the widely tunable syngas can also be produced over other Fe/Ni‐based bimetal catalysts, regardless of their structures and supporting materials, confirming the significant role of the metal sites in regulating the selectivity of CO2 photoreduction and providing a modular design strategy for syngas production.  相似文献   
97.
提出了一种可用于焦炉气转化的非催化部分氧化工艺,并进行了研究;同时对焦炉气非催化部分氧化和催化部分氧化制合成气工艺进行了比较,结果表明,催化部分氧化需要大量的外加蒸汽,其总体能耗并不比非催化部分氧化法低。  相似文献   
98.
Pt–Re supported on Ce0.52 Zr0.48 O2 was studied for the carbon dioxide reforming of methane at 800 °C. Diffuse reflectance fourier transform infrared spectroscopy and temperature programmed reduction studies suggest that Pt and Re segregation occurs during the reaction. The segregation results in an increase in the Pt sites available for CH4 decomposition and results in the bimetallic catalyst exhibiting an increase in the conversion of methane with time on stream. After 20 h of reaction, the CH4 conversion observed for the bimetallic catalyst was the same as the CH4 conversion observed for the monometallic catalyst.  相似文献   
99.
由下行床热解和提升管(或输送床)气化组合形成的流化床两段气化将煤气化反应过程解耦为煤热解和半焦气化两个反应阶段,热解产物完全进入气化反应器,利用其中的高温环境和输送的半焦催化作用分别实现焦油的热裂解与催化裂解,完成低焦油气化。利用该流化床两段气化的10 kg/h级实验室工艺实验装置,以榆林烟煤为原料、水蒸气/氧气作为气化剂,变化过量氧气系数ER、蒸汽炭比S/C、热解及气化温度等参数,研究水蒸气/氧流化床两段煤气化制备低焦油合成气的特性。结果表明,流化床两段气化系统可实现稳定运行(实验3 h以上),在ER=0.36和S/C=0.15时,热解和气化的代表温度分别稳定在735℃和877℃,合成气的CO、CO2、H2、CH4、C n H m 和N2含量分别为14.33%、10.07%、18.39%、9.89%、1.82%和45.50%,相应的合成气产量达到1.8 m3/kg,低位热值8.99 MJ/m3,焦油含量0.437 g/m3,展示了制备低焦油合成气的技术特征。对于实际的长时间连续运行,更高的气化温度将使流化床两段气化具有更好的低焦油特性。  相似文献   
100.
A novel and ideal dense catalytic membrane reactor for the reaction of partial oxidation of methane to syngas (POM) was constructed from the stable mixed conducting perovskite material of BaCo0.4Fe0.4Zr0.2O3– and the catalyst of LiLaNiO/-Al2O3. The POM reaction was performed successfully. Not only was a short induction period of 2 h obtained, but also a high catalytic performance of 96–98% CH4 conversion, 98–99% CO selectivity and an oxygen permeation flux of 5.4–5.8 mlcm–2min–1 (1.9–2.0 molm–2S–1Pa–1) at 850°C were achieved. Moreover, the reaction has been steadily carried out for more than 2200 h, and no interaction between the membrane material and the catalyst took place.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号