首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142190篇
  免费   9712篇
  国内免费   7204篇
电工技术   8487篇
技术理论   5篇
综合类   15484篇
化学工业   16161篇
金属工艺   8942篇
机械仪表   9226篇
建筑科学   12199篇
矿业工程   3703篇
能源动力   4437篇
轻工业   7596篇
水利工程   4368篇
石油天然气   7045篇
武器工业   1383篇
无线电   9481篇
一般工业技术   21604篇
冶金工业   4346篇
原子能技术   2847篇
自动化技术   21792篇
  2024年   234篇
  2023年   826篇
  2022年   1406篇
  2021年   1973篇
  2020年   2542篇
  2019年   2252篇
  2018年   2334篇
  2017年   2690篇
  2016年   3366篇
  2015年   4155篇
  2014年   7255篇
  2013年   8168篇
  2012年   8333篇
  2011年   8912篇
  2010年   7084篇
  2009年   8588篇
  2008年   8284篇
  2007年   9401篇
  2006年   8558篇
  2005年   7011篇
  2004年   6041篇
  2003年   5608篇
  2002年   5386篇
  2001年   4268篇
  2000年   4375篇
  1999年   3984篇
  1998年   3264篇
  1997年   3072篇
  1996年   3166篇
  1995年   3169篇
  1994年   2799篇
  1993年   1759篇
  1992年   1719篇
  1991年   1206篇
  1990年   884篇
  1989年   778篇
  1988年   716篇
  1987年   423篇
  1986年   249篇
  1985年   381篇
  1984年   435篇
  1983年   441篇
  1982年   347篇
  1981年   421篇
  1980年   290篇
  1979年   131篇
  1978年   114篇
  1977年   72篇
  1976年   42篇
  1975年   56篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
101.
This paper reports the performance of porous Gd-doped ceria (GDC) electrochemical cells with Co metal in both electrodes (cell No. 1) and with Ni metal in the cathode and Co metal in the anode (cell No. 2) for CO2 decomposition, CH4 decomposition, and the dry reforming reaction of a biogas with CO2 gas (CH4 + CO2 → 2H2 + 2CO) or with O2 gas in air (3CH4 +?1.875CO2 +?1.314O2 → 6H2 +?4.875CO +?0.7515O2). GDC cell No. 1 produced H2 gas at formation rates of 0.055 and 0.33?mL-H2/(min?m2-electrode) per 1?mL-supplied gas/(min?m2-electrode) at 600?°C and 800?°C, respectively, by the reforming of the biogas with CO2 gas. Similarly, cell No. 2 produced H2 gas at formation rates of 0.40?mL-H2/(min?m2) per 1?mL-supplied gas/(min?m2) at 800?°C from a mixture of biogas and CO2 gas. The dry reforming of a real biogas with CO2 or O2 gas at 800?°C proceeded thermodynamically over the Co or Ni metal catalyst in the cathode of the porous GDC cell. Faraday's law controlled the dry reforming rate of the biogas at 600?°C in cell No. 2. This paper also clarifies the influence of carbon deposition, which originates from CH4 pyrolysis (CH4 → C + 2H2) and disproportionation of CO gas (2CO → C + CO2), on the cell performance during dry reforming. The dry reforming of a biogas with O2 molecules from air exhibits high durability because of the oxidation of the deposited carbon by supplied air.  相似文献   
102.
In this study, solvent‐free nanofibrous electrolytes were fabricated through an electrospinning method. Polyethylene oxide (PEO), lithium perchlorate and ethylene carbonate were used as polymer matrix, salt and plasticizer respectively in the electrolyte structures. Keggin‐type hetero polyoxometalate (Cu‐POM@Ru‐rGO, Ni‐POM@Ru‐rGO and Co‐POM@Ru‐rGO (POM, polyoxometalate; rGO, reduced graphene oxide)) nanoparticles were synthesized and inserted into the PEO‐based nanofibrous electrolytes. TEM and SEM analyses were carried out for further evaluation of the synthesized filler structures and the electrospun nanofibre morphologies. The fractions of free ions and crystalline phases of the as‐spun electrolytes were estimated by obtaining Fourier transform infrared and XRD spectra, respectively. The results showed a significant improvement in the ionic conductivity of the nanofibrous electrolytes by increasing filler concentrations. The highest ionic conductivity of 0.28 mS cm?1 was obtained by the introduction of 0.49 wt% Co‐POM@Ru‐rGO into the electrospun electrolyte at ambient temperature. Compared with solution‐cast polymeric electrolytes, the electrospun electrolytes present superior ionic conductivity. Moreover, the cycle stability of the as‐spun electrolytes was clearly improved by the addition of fillers. Furthermore, the mechanical strength was enhanced with the insertion of 0.07 wt% fillers to the electrospun electrolytes. The results implied that the prepared nanofibres are good candidates as solvent‐free electrolytes for lithium ion batteries. © 2020 Society of Chemical Industry  相似文献   
103.
The present paper deals with the experimental assessment of the effectiveness of steel fibre reinforcement in terms of punching resistance of centrically loaded flat slabs, and to the development of an analytical model capable of predicting the punching behaviour of this type of structures. For this purpose, eight slabs of 2550 × 2550 × 150 mm3 dimensions were tested up to failure, by investigating the influence of the content of steel fibres (0, 60, 75 and 90 kg/m3) and concrete strength class (50 and 70 MPa). Two reference slabs without fibre reinforcement, one for each concrete strength class, and one slab for each fibre content and each strength class compose the experimental program. All slabs were flexurally reinforced with a grid of ribbed steel bars in a percentage to assure punching failure mode for the reference slabs. Hooked ends steel fibres provided the unique shear reinforcement. The results have revealed that steel fibres are very effective in converting brittle punching failure into ductile flexural failure, by increasing both the ultimate load and deflection, as long as adequate fibre reinforcement is assured. An analytical model was developed based on the most recent concepts proposed by the fib Mode Code 2010 for predicting the punching resistance of flat slabs and for the characterization of the behaviour of fibre reinforced concrete. The most refined version of this model was capable of predicting the punching resistance of the tested slabs with excellent accuracy and coefficient of variation of about 5%.  相似文献   
104.
In this work, we report the tuning effect of the Si substitution on the magnetic and high frequency electromagnetic properties of R2Fe17 compounds and their paraffin composites. It is found that the introduction of Si can remarkably improve the magnetic and electromagnetic properties of the R2Fe17 compounds, making the R2Fe17–xSix-paraffin composites excellent microwave absorption materials (MAMs). By introducing the Si element, their saturation magnetizations decrease slightly, while much higher Curie temperatures are obtained. Furthermore, better impedance match is reached due to the decrease of the high-frequency permittivity ε′ by about 40%–50%, which finally enhances the performance of the microwave absorption. The peak frequency (fRL) of the reflection loss (RL) curve moves toward high frequency domain and the qualified bandwidth (QB, RL ≤ ?10 dB) increases remarkably. The maximum QB of 3.3 GHz (12.0–15.3 GHz) is obtained for the Sm1.5Y0.5Fe15Si2-paraffin composite (d = 1.0 mm) and the maximum RL of ?53.6 dB is achieved for Nd2Fe15Si2-paraffin composite (d = 2.2 mm), both surpassing most of the reported MAMs. Additionally, a distinguished dielectric microwave absorption peak is observed, which further increases the QB in these composites.  相似文献   
105.
This paper presents a novel approach to the localization of moving targets in a complex environment based on the measurement of the perturbations induced by the target presence on an independently‐generated time‐varying electromagnetic field. Field perturbations are measured via a set of sensors deployed over the domain of interest and used to detect and track a possible target by resorting to a particle Bernoulli filter (PBF). To comply with real‐time operation, the PBF works along with an artificial neural network (ANN) model of the environment trained offline via finite elements (FEs). The performance of the proposed algorithm is assessed via simulation experiments.  相似文献   
106.
The present study focuses on the sintering of silicon carbide-based ceramics (SiC) by liquid phase sintering (LPS) followed by characterization of the produced ceramics. AlN/Re2O3 mixtures were used as additives in the LPS process. In the first step, the LPS-SiC materials were produced in a graphite resistance furnace in the form of discs at different temperatures. The conditions with the best results regarding real density and relative density were taken as reference for sintering in the form of prismatic bars. In the second step, these samples were evaluated regarding fracture toughness (KIC), by the Single Edge V Notch Beam – SEVNB – method, and flexural strength. KIC behavior was evaluated according to the depth and curvature radius of the notches. Reliable KIC values were presented when the ceramic displayed a small curvature radius at the notch tip. When the radius was large, it did not maintain the square root singularity of the notch tip. Tests were carried out to determine KIC values in atmospheric air and water. KIC results were lower in water than air, with a decrease ranging between 2.56% and 11.26%. The observations indicated a direct grain size correlation between KIC values and fracture strength of the SiC ceramics.  相似文献   
107.
In this paper, debonding phenomena between carbon fiber reinforced polymer (CFRP) strips and masonry support were investigated on the basis of single-lap shear tests, considering different dimensions of the bond length. To capture the post-peak response of the CFRP–masonry joint, the slip between the support and the reinforcement strip was controlled using a clip gauge positioned at the end of the reinforcement. The tests were simulated by means of a finite element model able to capture the post-peak snap-back behavior due to the failure process. The numerical model is based on zero-thickness interface elements and on a proper non-linear cohesive law. The comparison between experimental and numerical results was performed in terms of overall response, measured by both the machine stroke and the clip gauge positioned at the free end of the reinforcement. The cases of effective bond length greater and lesser than the minimum anchorage length, suggested by the CNR Italian recommendation, were considered.  相似文献   
108.
Drop-tube processing was used to rapidly solidify droplets of Ni64.7Fe10Si25.3 and Ni59.7Fe15Si25.3 alloys. In the larger droplets, and therefore at low cooling rates, only two phases, γ-Ni31Si12 and β1-Ni3Si were observed. Conversely, in the smaller droplets, and therefore at higher cooling rates, the metastable phase Ni25Si9 was also observed. The critical cooling rate for the formation of Ni25Si9 was estimated as 5 × 103 K s−1. SEM and TEM analysis reveals three typical microstructures: (I) a regular structure, comprising single-phase γ-Ni31Si12 and a eutectic structure between γ-Ni31Si12 and β1-Ni3Si; (II) a refined lamellar structure with a lamellar spacing <50 nm comprising γ-Ni31Si12 and β1-Ni3Si; (III) an anomalous structure with a matrix of Ni25Si9 and only a very small proportion of a second, and as yet unidentified, phase. These results indicate that there is an extended stability field for Ni25Si9 in the Ni-rich part of the Ni–Fe–Si ternary system in comparison to the Ni–Si binary system. With an increase of cooling rate, an increasing fraction of small droplets experience high undercoolings and, therefore, can be undercooled into the Ni25Si9 stability field forming droplets consisting of only the anomalous structure (III). The Fe atoms are found to occupy different substitutional sites in different phase, i.e. Fe substitutes for Ni in the γ phase and Si in the L121) phase respectively.  相似文献   
109.
Single image super resolution (SISR) is an important research content in the field of computer vision and image processing. With the rapid development of deep neural networks, different image super-resolution models have emerged. Compared to some traditional SISR methods, deep learning-based methods can complete the superresolution tasks through a single image. In addition, compared with the SISR methods using traditional convolutional neural networks, SISR based on generative adversarial networks (GAN) has achieved the most advanced visual performance. In this review, we first explore the challenges faced by SISR and introduce some common datasets and evaluation metrics. Then, we review the improved network structures and loss functions of GAN-based perceptual SISR. Subsequently, the advantages and disadvantages of different networks are analyzed by multiple comparative experiments. Finally, we summarize the paper and look forward to the future development trends of GAN-based perceptual SISR.  相似文献   
110.
Static stresses analysis of carbon nano-tube reinforced composite (CNTRC) cylinder made of poly-vinylidene fluoride (PVDF) is investigated in this study. Non-axisymmetric thermo-mechanical loads are applied on cylinder in presence of uniform longitudinal magnetic field and radial electric field. The surrounded elastic medium is modeled by Pasternak foundation because of its advantages to the Winkler type. Distribution of radial, circumferential and effective stresses, temperature field and electric displacements in CNTRC cylinder are determined based on Mori–Tanaka theory. The detailed parametric study is conducted, focusing on the remarkable effects of magnetic field intensity, elastic medium, angle orientation and volume fraction of carbon nano-tubes (CNTs) on distribution of effective stress. Results demonstrated that fatigue life of CNTRC cylinder will be significantly dependent on magnetic intensity, angle orientation and volume fraction of CNTs. Results of this research can be used for optimum design of thick-walled cylinders under multi-physical fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号