首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30181篇
  免费   2419篇
  国内免费   1384篇
电工技术   1670篇
综合类   1371篇
化学工业   5898篇
金属工艺   1315篇
机械仪表   742篇
建筑科学   805篇
矿业工程   412篇
能源动力   8540篇
轻工业   3965篇
水利工程   216篇
石油天然气   1845篇
武器工业   380篇
无线电   569篇
一般工业技术   1676篇
冶金工业   1367篇
原子能技术   1521篇
自动化技术   1692篇
  2024年   96篇
  2023年   620篇
  2022年   976篇
  2021年   1145篇
  2020年   1194篇
  2019年   1157篇
  2018年   979篇
  2017年   1091篇
  2016年   941篇
  2015年   852篇
  2014年   1631篇
  2013年   2105篇
  2012年   1861篇
  2011年   2703篇
  2010年   2071篇
  2009年   1896篇
  2008年   1725篇
  2007年   1941篇
  2006年   1537篇
  2005年   1219篇
  2004年   1072篇
  2003年   838篇
  2002年   766篇
  2001年   676篇
  2000年   539篇
  1999年   413篇
  1998年   320篇
  1997年   293篇
  1996年   246篇
  1995年   200篇
  1994年   178篇
  1993年   122篇
  1992年   130篇
  1991年   91篇
  1990年   66篇
  1989年   50篇
  1988年   37篇
  1987年   31篇
  1986年   31篇
  1985年   30篇
  1984年   27篇
  1983年   10篇
  1982年   22篇
  1981年   6篇
  1980年   8篇
  1979年   6篇
  1977年   3篇
  1961年   2篇
  1959年   12篇
  1951年   11篇
排序方式: 共有10000条查询结果,搜索用时 906 毫秒
51.
Stunting adversely affects physical and mental outcomes of children. It has not been examined whether household air pollution from solid fuel combustion is a risk factor for stunting in children. In a total of 41,439 children aged 6-17 across China, height was measured using a unified protocol. Multivariable linear regression models and logistic regression models were used to assess the associations of solid fuel use for cooking/heating with stunting in children. Adjusted for covariates, cooking/heating with solid fuel was significantly associated with a lower z-score for height for age and sex (β = −0.21 [−0.32 to −0.09] and −0.17 [−0.31 to −0.03], respectively) and an increased risk of stunting with an estimated ORs of 1.34 [1.07~1.68] and 1.37 [1.02~1.83], respectively. The risk of stunting associated with solid fuel use was statistically significant in high-age children. And the effect was greater on girls than on boys, though the difference was not statistically significant. Our study suggested that Chinese children living in households using solid fuel had a significantly higher risk of stunting than those living in households using cleaner fuel.  相似文献   
52.
53.
This work focuses on a novel, co-sintered, all-ceramic solid oxide fuel cell (SOFC) concept. The objective is the understanding of interaction and degradation mechanisms of the cathode and current collector layers within the design during co-sintering. Half cells consisting of silicate mechanical support, lanthanum strontium manganite (LSM) current collector, LSM mixed with 8 mol% yttria-stabilized zirconia (8YSZ) composite cathode and 8YSZ electrolyte were co-sintered at 1150 °C < T < 1250 °C. Crystallographically stable LSM compositions within the design were identified. However, the cathode and silicate/electrolyte interacted by interdiffusion of Zn (gas diffusion) and Mn (solid diffusion), and by the formation of several reaction phases (between silicate and cathode only). Introducing silicate poisoning decreased the electrochemical performance of the cell by around 40%. This is likely due to the formation of the Zn- and Mn-rich phase in the cathode, but may also be caused by a higher ohmic resistance of the current collector.  相似文献   
54.
Water-based sol-gel electrospinning is employed to manufacture perovskite oxide La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) nanofiber cathodes for intermediate-temperature solid oxide fuel cells. LSCF fibrous scaffolds are synthesized through electrospinning of a sol-gel solution employing water as the only solvent. Morphological characterizations demonstrate that the LSCF fibers have highly crystalline structure with uniform elemental distribution. After heat treatment, the average fiber diameter is 250 nm and the porosity of the nanofiber tissue is 37.5 %. The heat treated LSCF nanofibers are applied directly onto a Ce0.9Gd0.1O1.95 (CGO) electrolyte disk to form a symmetrical cell. Electrochemical characterization is carried out through electrochemical impedance spectroscopy (EIS) in the temperature range 550?°C–950?°C, and reproducibility of the electrochemical performance for a series of cells is demonstrated. At 650?°C, the average measured polarization resistance Rp is 1.0 Ω cm2. Measured performance decay is 1 % during the first 33?h of operation at 750?°C, followed by an additional 0.7 % over the subsequent 70?h.  相似文献   
55.
This work investigates the effect of the addition of small amounts of Ru (0.5‐1 wt%) to carbon supported Co (10 wt%) catalysts towards both NaBH4 and NH3BH3 hydrolysis for H2 production. In the sodium borohydride hydrolysis, the activity of Ru‐Co/carbon catalysts was sensibly higher than the sum of the activities of corresponding monometallic samples, whereas for the ammonia borane hydrolysis, the positive effect of Ru‐Co systems with regard to catalytic activity was less evident. The performances of Ru‐Co bimetallic catalysts correlated with the occurrence of an interaction between Ru and Co species resulting in the formation of smaller ruthenium and cobalt oxide particles with a more homogeneous dispersion on the carbon support. It was proposed that Ru°, formed during the reduction step of the Ru‐Co catalysts, favors the H2 activation, thus enhancing the reduction degree of the cobalt precursor and the number of Co nucleation centers. A subsequent reduction of cobalt and ruthenium species also occurs in the hydride reaction medium, and therefore the state of the catalyst before the catalytic experiment determines the state of the active phase formed in situ. The different relative reactivity of the Ru and Co active species towards the two investigated reactions accounted for the different behavior towards NaBH4 and NH3BH3 hydrolysis.  相似文献   
56.
This study evaluated several physical and sensory parameters of different types of cheese available in the Polish market. The measurements of textural properties were conducted in an Instron universal testing machine, while the colour properties of cheeses were measured using a Minolta chromameter. The chemical composition was determined by means of the near‐infrared spectroscopy (NIRs). Moreover, a trained sensory panel was invited to assess the cheese texture‐related properties. Generally, cheeses with reduced fat content were characterised by higher hardness, adhesiveness, cohesiveness and elasticity. Texture‐related parameters of cheese with canola oil were comparable to that of most of full‐fat cheeses. The correlation analysis between physical and sensory attributes related to cheese textural properties indicated the potential applications of TPA, shear and penetration tests (= 0.766, = 0.75 and = 0.765, respectively) for the evaluation of sensory properties related to the hardness. Meanwhile, the elasticity of cheese obtained from sensory evaluation was strongly correlated with the elasticity determined from the shear test (= 0.722) and moderately correlated with the elasticity from penetration test (= 0.588), indicating a need to refine the method of penetration test. In addition, cheeses exhibited higher meltability during convection heating at 230 °C than microwave heating. The values of meltability for cheese with reduced fat content were lower than those of full‐fat cheese.  相似文献   
57.
Advanced biogas power generation technology has been attracting attentions, which contributes to the waste disposal and the mitigation of greenhouse gas emissions. This work proposes and models a novel biogas-fed hybrid power generation system consisting of solid oxide fuel cell, water gas shift reaction, thermal swing adsorption and proton exchange membrane fuel cell (SOFC-WGS-TSA-PEMFC). The thermodynamic, exergetic, and thermo-economic analyses of this hybrid system for power generation were conducted to comprehensively evaluate its performance. It was found that the novel biogas-fed hybrid system has a gross energy conversion efficiency of 68.63% and exergy efficiency of 65.36%, indicating high efficiency for this kind of hybrid power technology. The market sensitivity analysis showed that the hybrid system also has a low sensitivity to market price fluctuation. Under the current subsidy level for the distributed biogas power plant, the levelized cost of energy can be lowered to 0.02942 $/kWh for a 1 MW scale system. Accordingly, the payback period and annual return on investment can reach 1.4 year and about 20%, respectively. These results reveal that the proposed hybrid system is promising and economically feasible as a distributed power plant, especially for the small power scale (no more than 2 MW).  相似文献   
58.
《Ceramics International》2020,46(1):592-597
The effects of activated carbon (AC) as an additive in multi-oxide nano composite LiNiCuZn–O for application as anode in solid oxide fuel cell (SOFC) is reported. The composite was synthesized using solid state reactions method with varying content of AC in range 0.1%–0.9% for use as anode in the cell. The cell was composed of the synthesized composite as anode, LiNiCuZn–O as cathode and Samaria doped ceria (SDC) as electrolyte. The prepared composites were characterized for morphology and crystal structure by scanning electron microscope (SEM) and x-ray diffraction (XRD) respectively. Furthermore, the crystallite sizes of LiNiCuZn–O and LiNiCuZn–O with AC as an additive have been found in the range from 50 nm to 70 nm. The prepared composite materials were observed porous and the porosity of the sample having 0.5% additive was found highest. The conductivity and power density of the SOFC were studied at temperature of 600 °C. The maximum value of conductivity was found as 4.79 S/cm for the composite containing 0.5% AC as measured by using 4-probe method. The maximum value of power density of the fuel cell with anode comprising of 0.5% AC along with the mentioned cathode and the electrolyte was 455 mW/cm2. Therefore, out of the compositions studied, the composite comprising of LiNiCuZn–O with 0.5% AC offered best performance for anode in the cell. This oxide composite is reported as a potential candidate for use as anode in low temperature SOFCs.  相似文献   
59.
60.
The in-situ fabrication of an electron-blocking layer between the Ba-containing anode and the ceria-based electrolyte is an effective approach in suppressing the internal electronic leakage in ceria-based solid oxide fuel cell (SOFC). To improve the thickness of the electron-blocking layer and to research the effect of the layer thickness on the improvement of SOFC, a Ba-containing compound (0.6NiO-0.4BaZr0.1Ce0.7Y0.2O3-δ) modified by Y stabilized zirconia (YSZ) was employed as a composite anode in this research. SEM analyses demonstrated that the thickness of the interlayer can be simply controlled by regulating the proportion of YSZ at anode. The in-situ formed interlayer in the cell with the anode modified by 20?mol% YSZ possesses a thickness of 0.9?µm which is more suitable for the cell achieving an enhanced performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号