首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9134篇
  免费   544篇
  国内免费   546篇
电工技术   350篇
综合类   404篇
化学工业   640篇
金属工艺   222篇
机械仪表   936篇
建筑科学   381篇
矿业工程   48篇
能源动力   175篇
轻工业   408篇
水利工程   37篇
石油天然气   77篇
武器工业   56篇
无线电   868篇
一般工业技术   873篇
冶金工业   204篇
原子能技术   38篇
自动化技术   4507篇
  2024年   14篇
  2023年   66篇
  2022年   99篇
  2021年   118篇
  2020年   142篇
  2019年   210篇
  2018年   196篇
  2017年   269篇
  2016年   346篇
  2015年   312篇
  2014年   510篇
  2013年   531篇
  2012年   509篇
  2011年   820篇
  2010年   529篇
  2009年   577篇
  2008年   654篇
  2007年   597篇
  2006年   524篇
  2005年   480篇
  2004年   447篇
  2003年   358篇
  2002年   318篇
  2001年   198篇
  2000年   187篇
  1999年   198篇
  1998年   181篇
  1997年   104篇
  1996年   110篇
  1995年   105篇
  1994年   77篇
  1993年   71篇
  1992年   66篇
  1991年   63篇
  1990年   45篇
  1989年   41篇
  1988年   36篇
  1987年   18篇
  1986年   27篇
  1985年   11篇
  1984年   14篇
  1983年   11篇
  1982年   19篇
  1981年   10篇
  1980年   2篇
  1979年   3篇
  1977年   1篇
排序方式: 共有10000条查询结果,搜索用时 482 毫秒
101.
The paper deals with state estimation of the nonlinear stochastic systems by means of the unscented Kalman filter with a focus on specification of the σσ-points. Their position is influenced by two design parameters—the scaling parameter determining the spread of the σσ-points and a covariance matrix decomposition determining rotation of the σσ-points. In this paper, a choice of the scaling parameter is analyzed. It is shown that considering other values than the standard choice may lead to increased quality of the estimate, especially if the scaling parameter is adapted. Several different criteria for the adaptation are proposed and techniques to reduce computational costs of the adaptation are developed. The proposed algorithm of the unscented Kalman filter with advanced adaptation of the scaling parameter is illustrated in a numerical example.  相似文献   
102.
The Crank–Nicolson scheme as well as its modified schemes is widely used in numerical simulations for the nonlinear Schrödinger equation. In this paper, we prove the multisymplecticity and symplecticity of this scheme. Firstly, we reconstruct the scheme by the concatenating method and present the corresponding discrete multisymplectic conservation law. Based on the discrete variational principle, we derive a new variational integrator which is equivalent to the Crank–Nicolson scheme. Therefore, we prove the multisymplecticity again from the Lagrangian framework. Symplecticity comes from the proper discrete Hamiltonian structure and symplectic integration in time. We also analyze this scheme on stability and convergence including the discrete mass conservation law. Numerical experiments are presented to verify the efficiency and invariant-preserving property of this scheme. Comparisons with the multisymplectic Preissmann scheme are made to show the superiority of this scheme.  相似文献   
103.
This paper presents GPELab (Gross–Pitaevskii Equation Laboratory), an advanced easy-to-use and flexible Matlab toolbox for numerically simulating many complex physics situations related to Bose–Einstein condensation. The model equation that GPELab solves is the Gross–Pitaevskii equation. The aim of this first part is to present the physical problems and the robust and accurate numerical schemes that are implemented for computing stationary solutions, to show a few computational examples and to explain how the basic GPELab functions work. Problems that can be solved include: 1d, 2d and 3d situations, general potentials, large classes of local and nonlocal nonlinearities, multi-components problems, and fast rotating gases. The toolbox is developed in such a way that other physics applications that require the numerical solution of general Schrödinger-type equations can be considered.  相似文献   
104.
A nonlinear control is proposed for trajectory tracking of a 6-DOF model-scaled helicopter with constraints on main rotor thrust and fuselage attitude. In the procedure of control design, the mathematical model of helicopter is simplified into three subsystems: altitude subsystem, longitudinal-lateral subsystem and attitude subsystem. The proposed control is developed by combining the sub-controls for the corresponding subsystems. The sub-controls for altitude subsystem and longitudinal-lateral subsystem are designed with hyperbolic tangent functions to satisfy the constraints; the sub-control for attitude subsystem is based on backstepping technique such that fuselage attitude tracks the virtual control for longitudinallateral subsystem. It is proved theoretically that tracking errors are ultimately bounded, and control constraints are satisfied.Performances of the proposed controller are demonstrated by simulation results.  相似文献   
105.
主旋翼升力和机身姿态受限的模型直升机非线性控制   总被引:2,自引:0,他引:2  
诸兵  霍伟 《自动化学报》2014,40(11):2654-2664
针对主旋翼升力和机身姿态受限的6自由度模型无人直升机的轨迹跟踪控制问题设计了一种非线性控制器.在控制器设计过程中,直升机的数学模型被简化为三个子系统: 姿态子系统,纵-侧向子系统和高度子系统,所设计的控制器由针对这三个子系统的子控制器组成.纵-侧向和高度子控制器基于双曲正切函数进行设计,以保证满足受限条件; 姿态子控制器利用反步法设计,使得机身姿态能够跟踪纵-侧向和高度子系统的虚拟控制.本文在理论上证明了闭环系统跟踪误差最终有界,并且控制器满足受限条件.仿真结果证实了所设计控制器的性能.  相似文献   
106.
《Automatica》2014,50(11):2918-2923
In this paper we consider the problem of global asymptotic stabilization with prescribed local behavior. We show that this problem can be formulated in terms of control Lyapunov functions. Moreover, we show that if the local control law has been synthesized employing an LQ approach, then the associated Lyapunov function can be seen as the value function of an optimal problem with some specific local properties. We illustrate these results on two specific classes of systems: backstepping and feedforward systems. Finally, we show how this framework can be employed when considering the orbital transfer problem.  相似文献   
107.
In the present paper, nonlinear features and analytical results for the chaotic bubbling from a submerged orifice are described. A chain of air bubbles was produced from the single orifice of in diameter and micro-convection induced by the bubble generation was recorded using hot-probe anemometer located close to the orifice. The air flow rate was varied widely from q=100 to and the aspects of bubbling were observed by high-speed video. The nonlinear analysis is performed for the time series data of hot-probe anemometer especially in the range of q=435-. The calculated largest Lyapunov exponent shows that with increase of air volume flow rate, the time period for the process of liquid flow to lose stability becomes shorter and at high air flow rate such as , it is shorter than the time period between subsequent bubbles. To explain such chaotic behaviors of bubbling, a simple model has been proposed. The model simulates the process of interaction between the elastic bubble wall and liquid. Simulation results compared well with the analytical results of experimental data. Summarizing, it is concluded that one of the reasons for chaos appearance is the nonlinear character of interaction between an elastic bubble wall and the liquid stream.  相似文献   
108.
The improvement of safety and dependability in systems that physically interact with humans requires investigation with respect to the possible states of the user’s motion and an attempt to recognize these states. In this study, we propose a method for real-time visual state classification of a user with a walking support system. The visual features are extracted using principal component analysis and classification is performed by hidden Markov models, both for real-time fall detection (one-class classification) and real-time state recognition (multi-class classification). The algorithms are used in experiments with a passive-type walker robot called “RT Walker” equipped with servo brakes and a depth sensor (Microsoft Kinect). The experiments are performed with 10 subjects, including an experienced physiotherapist who can imitate the walking pattern of the elderly and people with disabilities. The results of the state classification can be used to improve fall-prevention control algorithms for walking support systems. The proposed method can also be used for other vision-based classification applications, which require real-time abnormality detection or state recognition.  相似文献   
109.
This work faces the redundancy problem, a central concern in robotics, in a particular force-producing task by using muscle synergies to simplify the control. We extracted muscle synergies from human electromyograph signals and interpreted the physical meaning of the identified muscle synergies. Based on the human analysis results, we hypothesized a novel control framework that can explain the mechanism of the human motor control. The framework was tested in controlling a pneumatic-driven robotic arm to perform a reaching task. This control method, which uses only two synergies as manipulated variables for driving antagonistic pneumatic artificial muscles to generate desired movements, would be useful to deal with the redundancy problem; thus, suggesting a simple but efficient control for human-like robots to work safely and compliantly with humans.  相似文献   
110.
A nonlinear multiobjective model-predictive control (NMMPC) scheme, consisting of self-organizing radial basis function (SORBF) neural network prediction and multiobjective gradient optimization, is proposed for wastewater treatment process (WWTP) in this paper. The proposed NMMPC comprises a SORBF neural network identifier and a multiple objectives controller via the multi-gradient method (MGM). The SORBF neural network with concurrent structure and parameter learning is developed as a model identifier for approximating on-line the states of WWTP. Then, this NMMPC optimizes the multiple objectives under different operating functions, where all the objectives are minimized simultaneously. The solution of optimal control is based on the MGM which can shorten the solution time. Moreover, the stability and control performance of the closed-loop control system are well studied. Numerical simulations reveal that the proposed control strategy gives satisfactory tracking and disturbance rejection performance for WWTP. Experimental results show the efficacy of the proposed method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号