首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17200篇
  免费   1858篇
  国内免费   1043篇
电工技术   475篇
技术理论   2篇
综合类   1195篇
化学工业   4515篇
金属工艺   960篇
机械仪表   752篇
建筑科学   847篇
矿业工程   382篇
能源动力   858篇
轻工业   1848篇
水利工程   162篇
石油天然气   881篇
武器工业   102篇
无线电   2354篇
一般工业技术   2874篇
冶金工业   959篇
原子能技术   457篇
自动化技术   478篇
  2024年   46篇
  2023年   375篇
  2022年   491篇
  2021年   638篇
  2020年   624篇
  2019年   547篇
  2018年   535篇
  2017年   643篇
  2016年   668篇
  2015年   742篇
  2014年   1023篇
  2013年   1180篇
  2012年   1245篇
  2011年   1263篇
  2010年   933篇
  2009年   995篇
  2008年   776篇
  2007年   1063篇
  2006年   1018篇
  2005年   717篇
  2004年   683篇
  2003年   648篇
  2002年   530篇
  2001年   457篇
  2000年   375篇
  1999年   323篇
  1998年   264篇
  1997年   240篇
  1996年   167篇
  1995年   138篇
  1994年   132篇
  1993年   105篇
  1992年   99篇
  1991年   97篇
  1990年   54篇
  1989年   50篇
  1988年   37篇
  1987年   39篇
  1986年   31篇
  1985年   21篇
  1984年   11篇
  1983年   17篇
  1982年   13篇
  1981年   16篇
  1980年   4篇
  1979年   5篇
  1976年   3篇
  1975年   3篇
  1974年   4篇
  1951年   5篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
21.
The potential energy profile of the reaction between dimethyl disulfide and OH? radicals is explored by utilizing ab initio and hybrid meta density functional theory methods. Having the energies and structural data of the stationary points, statistical rate theories, such as transition state theory and variable reaction coordinate-transition state theory, are employed to compute the overall rate constants, and discuss the mechanism and product channels. On the basis of the calculations, the overall rate coefficient is predicted to be 2.49?×?10?10?cm3?molecule?1?s?1 at 298?K. It is found that in the most favorable pathway, the reaction proceeds via formation of the relatively unstable intermediate CH3S?(OH)SCH3 decomposing rapidly to yield CH3S?+CH3SOH.  相似文献   
22.
Global decrease in crude oil resources and frequent crude oil leaks cause the energy crisis and ecological pollution. The absorption and release of leaked crude oil through absorption materials are a necessary process for environmental protection and recycling. In this article, a CO2-responsive olefin copolymer was obtained by copolymerization of styrene and an amine-containing olefin monomer. The structure of resultant copolymer was characterized by FTIR; thermal properties and CO2-responsive morphology changes were determined by DSC/TGA and SEM, respectively. Copolymers had certain absorption capacity for toluene with absorption rate up to 180.0%. The absorbed toluene could be released upon CO2 stimulation with desorption rate up to 84.6%. The CO2-responsive copolymer could be regenerated through a simple heating process and showed stable absorption–desorption performance even after being recycled for 4 times. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47439.  相似文献   
23.
Novel SiC-based nanomaterials, namely the nitrogen and aluminum co-doped SiC@SiO2 core-shell nanowires and nitrogen-doped SiO2/Al2O3 nanoparticles, have been fabricated through a facile thermal treatment process based on the chemical vapor deposition and vapor-liquid reaction. These nanomaterials show remarkable hydrophobicity with a water contact angle (CA) over 140°, which are aroused by the surface zigzag morphology of the nanostructures and the hydrocarbyl groups generated during the preparation process. Moreover the nanocomposites also exhibit relatively prominent microwave absorption (MA) properties in the frequency range of 2.0-18.0 GHz. The minimum reflection loss (RL) value as low as −23.68 dB can be observed at 14.16 GHz when the absorber thickness is 2.6 mm with a loading rate of 16.7 wt%. And the nanocomposites-based absorbent can achieve an effective absorption bandwidth (RL < −10 dB) of 4.48 GHz with the absorbent thickness of 2.5 mm. This enhanced microwave attenuation performance can be attributed to multiple polarizations and perfect impedance matching conditions, as well as multiple internal reflections. These marvelous properties make these N and Al co-doped SiC@SiO2 core-shell nanowires and N-doped SiO2/Al2O3 nanoparticles display extensive application potential as MA materials in harsh environment.  相似文献   
24.
The construction of nonlinear optical materials featuring asymmetric transmission of light is of great technological importance for various applications, including optical switching and optical power limiting. A significant challenge is the scalable fabrication of material candidates with good photochemical stability, high optical transmittance, and excellent optical limiting performance. Here, we present a nanocrystallization avenue for constructing hybrid optical limiting materials that exhibit ultrafast and robust optical limiting performance. The experimental results show that the controllable relaxation of a niobate glass may lead to the clustering of Nb-O units and contracting of the bandgap. It results in the notable improvement in nonlinear optical properties, including the enhanced saturation irradiance (380 GW/cm2), doubly increased nonlinear coefficient, and decreased limiting threshold (200 GW/cm2). Our results suggest a promising material that exhibits promising applications for protecting eyes and sensitive components from laser-induced damage.  相似文献   
25.
According to the definition of spectral integral,a new spectral characteristic parameter,with the name Reversed Spectral Absorption Integral(RSAI),is proposed and used to retrieve the chromium content based on the Partial Least Squares Regression(PLSR) model.The contrastive study with other traditional spectral characteristic parameters,including differential transformation,inverse transformation,absorption area,etc.indicates that(1) the first derivation of square root transformed model can predict the chromium content quantitatively in terms of spectral transformations.(2) the stability of the absorption area model is slightly poor,and the chromium content of samples can only be estimated roughly.(3) However,as to the inversed spectral absorption integral model,the adjustment determination coefficient(Ad-R2) of the modeling and verification is 0.73 and 0.77,while the Root Mean Squared Error(RMSE) is 2.63 mg/kg and 2.36 mg/kg respectively with Relative Percent Deviation(RPD) being 3.21,which shows that the RSAI model has excellent prediction ability.So,the inversed spectral absorption integral new model can improve the accuracy and stability used to retrieve the chromium content,which provides a new idea for monitoring the chromium contamination in soil.  相似文献   
26.
《Ceramics International》2020,46(10):15925-15934
Herein, reduced graphene oxide/cobalt-zinc ferrite (RGO/Co0.5Zn0.5Fe2O4) hybrid nanocomposites were fabricated by a facile hydrothermal strategy. Results revealed that the contents of RGO could affect the micromorphology, electromagnetic parameters and electromagnetic wave absorption properties. As the contents of RGO increased in the as-synthesized hybrid nanocomposites, the dispersibility of the particles was improved. Meanwhile, numerously ferromagnetic Co0.5Zn0.5Fe2O4 particles were evenly anchored on the wrinkled surfaces of flaky RGO. Besides, the obtained hybrid nanocomposites exhibited superior electromagnetic absorption in both X and Ku bands, which was achieved by adjusting the RGO contents and matching thicknesses. Significantly, when the content of RGO was 7.4 wt%, the binary nanocomposites showed the optimal reflection loss of -73.9 dB at a thickness of 2.2 mm and broadest effective absorption bandwidth of 6.0 GHz (12.0–18.0 GHz) at a thin thickness of merely 2.0 mm. The enhanced electromagnetic absorption performance was primarily attributed to the multiple polarization effects, improved conduction loss caused by electron migration, and magnetic loss derived from ferromagnetic Co0.5Zn0.5Fe2O4 nanoparticles. Our results could provide inspiration for manufacturing graphene-based hybrid nanocomposites as high-efficient electromagnetic wave absorbers.  相似文献   
27.
Enhancement of the dissolution rate of the poorly water-soluble hypoglycemic agent, gliclazide, by the aid of lyophilization was investigated. Mannitol, sodium lauryl sulfate (SLS) and polyvinyl pyrrolidone (PVP-k-30) were employed in different weight ratios (43%, 56% and 64% w/w, respectively) as water-soluble excipients in the formulation. Lyophilized systems were found to exhibit extremely higher in vitro dissolution rate compared to the unprocessed drug powder. Solid state characterization of the lyophilized systems using X-ray powder diffraction, Fourier transform infrared spectroscopy and differential scanning calorimetry techniques revealed that dissolution enhancement was attributable to transformation of gliclazide from the crystalline to an amorphous state in the solid dispersion formed during the lyophilization process. The gastrointestinal absorption and hypoglycemic effect of the lyophilized gliclazide/SLS system were investigated following oral administration to Albino rabbits. Cmax and area under the plasma concentration–time curve of gliclazide (AUC0–12) after administration of the lyophilized formulations were significantly higher than those obtained after administration of the unprocessed gliclazide.  相似文献   
28.
Passive permeability is a key property in drug disposition and delivery. It is critical for gastrointestinal absorption, brain penetration, renal reabsorption, defining clearance mechanisms and drug-drug interactions. Passive diffusion rate is translatable across tissues and animal species, while the extent of absorption is dependent on drug properties, as well as in vivo physiology/pathophysiology. Design principles have been developed to guide medicinal chemistry to enhance absorption, which combine the balance of aqueous solubility, permeability and the sometimes unfavorable compound characteristic demanded by the target. Permeability assays have been implemented that enable rapid development of structure-permeability relationships for absorption improvement. Future advances in assay development to reduce nonspecific binding and improve mass balance will enable more accurately measurement of passive permeability. Design principles that integrate potency, selectivity, passive permeability and other ADMET properties facilitate rapid advancement of successful drug candidates to patients.  相似文献   
29.
High-entropy alloys (HEAs), as a new class of metallic materials, have received more and more attention due to its excellent mechanical properties. In this study, the hydrogen absorption properties, such as hydrogen absorption capacity, thermodynamics, kinetics and cyclic properties, as well as the hydride structure of a newly designed TiZrNbTa HEA were investigated. The results showed that multiple hydrides including ε-ZrH2, ε-TiH2 and β-(Nb,Ta)H were found in the TiZrNbTa HEA after hydrogenation. With the increase of temperature from 293 K to 493 K, the maximum hydrogen absorption capacity decreased from 1.67 wt% to 1.25 wt% and the plateau pressure related with β-(Nb,Ta)H hydrides increased from 1.6 kPa to 14.8 kPa. The formation enthalpy of β-(Nb,Ta)H hydride was determined to be −6.4 kJ/mol, which was less stable than that of NbH and TaH hydrides. The results also showed that the TiZrNbTa HEA exhibited a rapid hydrogen absorption kinetic even at the room temperature with a short incubation time, and the hydrogen absorption mechanism was determined to be the nucleation and growth mechanism. Moreover, the hydrogen absorption capacity at 293 K decreased slowly with the cycle numbers, and remained 86% capacity after 10 cycles. Cracking occurred after hydrogen absorption and became worse with cycles.  相似文献   
30.
随着我国环境保护法规《大气污染防治法》的修订和《涂料征收消费税通知》的公布,探讨了其对船舶涂料企业的冲击及其应对措施。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号