首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9635篇
  免费   325篇
  国内免费   345篇
电工技术   546篇
综合类   537篇
化学工业   1887篇
金属工艺   750篇
机械仪表   430篇
建筑科学   504篇
矿业工程   307篇
能源动力   513篇
轻工业   164篇
水利工程   88篇
石油天然气   872篇
武器工业   30篇
无线电   798篇
一般工业技术   2271篇
冶金工业   223篇
原子能技术   79篇
自动化技术   306篇
  2024年   6篇
  2023年   105篇
  2022年   173篇
  2021年   225篇
  2020年   226篇
  2019年   214篇
  2018年   222篇
  2017年   322篇
  2016年   335篇
  2015年   361篇
  2014年   490篇
  2013年   575篇
  2012年   575篇
  2011年   851篇
  2010年   586篇
  2009年   596篇
  2008年   594篇
  2007年   556篇
  2006年   474篇
  2005年   420篇
  2004年   372篇
  2003年   379篇
  2002年   294篇
  2001年   170篇
  2000年   170篇
  1999年   177篇
  1998年   142篇
  1997年   130篇
  1996年   103篇
  1995年   85篇
  1994年   81篇
  1993年   52篇
  1992年   39篇
  1991年   38篇
  1990年   34篇
  1989年   27篇
  1988年   11篇
  1987年   14篇
  1986年   12篇
  1985年   9篇
  1984年   6篇
  1983年   9篇
  1982年   18篇
  1981年   5篇
  1980年   8篇
  1978年   6篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
21.
The current study establishes the unprecedented involvement in the evolution and production of novel core–shell nanocomposites composed of nanosized titanium dioxide and aniline‐o‐phenylenediamine copolymer. TiO2@copoly(aniline and o‐phenylenediamine) (TiO2@PANI‐o‐PDA) core–shell nanocomposites were chemically synthesized in a molar ratio of 5:1 of the particular monomers and several weights of nano‐TiO2 via oxidative copolymerization. The construction of the TiO2@PANI‐o‐PDA core–shell nanocomposites was ascertained from Fourier transform IR spectroscopy, UV–visible spectroscopy and XRD. A reasonable thermal behavior for the original copolymer and the TiO2@PANI‐o‐PDA core–shell nanocomposites was investigated. The bare PANI‐o‐PDA copolymer was thermally less stable than the TiO2@PANI‐o‐PDA nanocomposites. The core–shell feature of the nanocomposites was found to have core and shell sizes of 17 nm and 19–26 nm, respectively. In addition, it was found that the addition of a high ratio of TiO2 nanoparticles increases the electrical conductivity and consequently lowers the electrical resistivity of the TiO2@PANI‐o‐PDA core–shell nanocomposites. The hybrid photocatalysts exhibit a dramatic photocatalytic efficacy of methylene blue degradation under solar light irradiation. A plausible interpretation of the photocatalytic degradation results of methylene blue is also demonstrated. Our setup introduces a facile, inexpensive, unique and efficient technique for developing new core–shell nanomaterials with various required functionalities and colloidal stabilities. © 2018 Society of Chemical Industry  相似文献   
22.
The present paper tests experimentally the through-thickness electrical conductivity of carbon fiber-reinforced polymer (CFRP) composites laminates for aircraft applications. Two types of samples were prepared: Type A samples with carbon nanotubes (CNTs) and Type B samples without CNTs. During the electrical experiments, electrical currents of several mA were injected through the specimens. Electrical resistance was monitored simultaneously in order to deduce the changes in the through-the-thickness electrical conductivity caused by the addition of CNTs. Improvement of electrical conduction by two orders of magnitude was achieved through the addition of 1 wt% carbon nanotubes as compared to classic CFRP without CNTs. For moisture saturated samples, the influence of moisture absorption on such measures was found to be negligible.  相似文献   
23.
《Ceramics International》2020,46(13):21014-21020
Structural features of the glass family xLi2O- yMgO (4.8 Bi2O3 47.6 P2O5) obtained by melt quenching technique were studied taking into account the density, FTIR and UV–vis spectra and also the electrical response observed by impedance spectroscopy. In this work it becomes clarified how the alkaline earth oxides stabilize the glassy matrix and also, the fundamental importance of determining the optimal proportion in order to obtain a flabby easily polarizable matrix to enhance the electrical behavior due to a boosted cation mobility. It is evidenced that when the glass composition becomes complex it is needed to take into account a larger number of structural parameters to understand, to predict or to design the resulting physical properties.  相似文献   
24.
Undoped and fluorine doped ZnO thin films were deposited onto glass substrates using successive ionic layer adsorption and reaction (SILAR) technique and then annealed at 350 °C in vacuum ambience. The F doping level was varied from 0 to 15 at% in steps of 5 at%. The XRD analysis showed that all the films are polycrystalline with hexagonal wurtzite structure and preferentially oriented along the (002) plane. Crystallite sizes were found to increase when 5 at% of F is doped and then decreased with further doping. It was seen from the SEM images that the doping causes remarkable changes in the surface morphology and the annealing treatment results in well-defined grains with an improvement in the grain size irrespective of doping level. All the films exhibit good transparency (>70%) after vacuum annealing. Electrical resistivity of the film was found to be minimum (1.32×10−3 Ω cm) when the fluorine doping level was 5 at%.  相似文献   
25.
Poly (linoleic acid)-g-poly(methyl methacrylate) (PLiMMA) graft copolymer was synthesized and characterized. PLiMMA graft copolymer was synthesized from polymeric linoleic acid peroxide (PLina) possessing peroxide groups in the main chain by free radical polymerization of methyl methacrylate. Later, PLiMMA was characterized by proton nuclear magnetic resonance (1H NMR), gel permeation chromatography (GPC), thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques. Furthermore, Au/PLiMMA/n-Si diode was fabricated for the purpose of investigating PLiMMA׳s conformity in diodes. The main electrical characteristics of this diode were investigated using experimental current–voltage (IV) measurements in dark and at room temperature. Obtained results, such as sufficiently high rectifying ratio of 4.5×104, indicate that PLiMMA is a promising organic material for electronic device applications.  相似文献   
26.
Reactive hot pressing was utilized to synthesize and densify four ZrB2 ceramics with impurity contents low enough to avoid obscuring the effects of dopants on thermal properties. Nominally pure ZrB2 had a thermal conductivity of 141 ± 3 W/m K at 25 °C. Additions of 3 at% of Ti, Y, or Hf decreased the thermal conductivity by 20 %, 30 %, and 40 %, respectively. The thermal conductivity of (Zr,Hf)B2 was similar to ZrB2 synthesized from commercial powders containing the natural abundance of Hf as an impurity. This is the first study to demonstrate that Ti and Y additions decrease the thermal conductivity of ZrB2 ceramics and report intrinsic values for thermal conductivity and electrical resistivity of ZrB2 containing transition metal additions. Previous studies were unable to detect these effects because the natural abundance of Hf present masked the effects of these additions.  相似文献   
27.
Self-healing is a smart and promising way to make materials more reliable and longer lasting. In the case of structural or functional composites based on a polymer matrix, very often mechanical damage in the polymer matrix or debonding at the matrix–filler interface is responsible for the decrease in intended properties. This review describes the healing behavior in structural and functional polymer composites with a so-called intrinsically self-healing polymer as the continuous matrix. A clear similarity in the healing of structural and functional properties is demonstrated which can ultimately lead to the design of polymer composites that autonomously restore multiple properties using the same self-healing mechanism.  相似文献   
28.
The surface chemistry and mineral liberation changes of a porphyry copper ore after high voltage pulse (HVP) electrical comminution have been investigated using X-ray photoelectron spectroscopy (XPS) and mineral liberation analysis (MLA). Previous studies suggest that electrical comminution has the potential to improve downstream flotation recoveries, due to increased mineral liberation. However, until now the effects on the surface chemistry have not been investigated in detail.The mineral liberation results showed that chalcopyrite was more liberated in the electrical comminution product than in mechanical comminution, noticeably in the coarser size fractions. The surface chemistry of pure chalcopyrite was investigated, using XPS, and high resolution scans of iron and sulphur showed that both comminution methods led to iron oxidising preferentially leaving behind a passivating film of copper sulphides. However, the HVP product oxidisation was more severe with more iron oxide being produced and further oxidation of the remaining copper sulphides into copper sulphate. An attrition grinding stage may be useful in removing the oxidised layer from the surface of the particles prior to flotation separation. This paper presents a new application of the HVP technology in hybrid procedures using electrical comminution and mechanical grinding to prepare the flotation feed, rather than using excessive pulse energy to fully disintegrate ore to the flotation size. Better liberation and flotation performance were achieved through the hybrid procedures than the comparative mechanical comminution.  相似文献   
29.
This paper reports the performance of porous Gd-doped ceria (GDC) electrochemical cells with Co metal in both electrodes (cell No. 1) and with Ni metal in the cathode and Co metal in the anode (cell No. 2) for CO2 decomposition, CH4 decomposition, and the dry reforming reaction of a biogas with CO2 gas (CH4 + CO2 → 2H2 + 2CO) or with O2 gas in air (3CH4 +?1.875CO2 +?1.314O2 → 6H2 +?4.875CO +?0.7515O2). GDC cell No. 1 produced H2 gas at formation rates of 0.055 and 0.33?mL-H2/(min?m2-electrode) per 1?mL-supplied gas/(min?m2-electrode) at 600?°C and 800?°C, respectively, by the reforming of the biogas with CO2 gas. Similarly, cell No. 2 produced H2 gas at formation rates of 0.40?mL-H2/(min?m2) per 1?mL-supplied gas/(min?m2) at 800?°C from a mixture of biogas and CO2 gas. The dry reforming of a real biogas with CO2 or O2 gas at 800?°C proceeded thermodynamically over the Co or Ni metal catalyst in the cathode of the porous GDC cell. Faraday's law controlled the dry reforming rate of the biogas at 600?°C in cell No. 2. This paper also clarifies the influence of carbon deposition, which originates from CH4 pyrolysis (CH4 → C + 2H2) and disproportionation of CO gas (2CO → C + CO2), on the cell performance during dry reforming. The dry reforming of a biogas with O2 molecules from air exhibits high durability because of the oxidation of the deposited carbon by supplied air.  相似文献   
30.
《Ceramics International》2020,46(13):20798-20809
The yttrium substituted cadmium ferrites having composition Cd1-xYxFe2O4 (X = 0.00, 0.125, 0.250, 0.375, 0.500) were synthesized by the co-precipitation method and sintered at 1100 °C for 6 h. Structural, morphological, electrical, optical and dielectric characteristics were explored by XRD, SEM, EDS, FTIR, I–V two probes, UV–Vis and LCR techniques.XRD results confirmed the cubic structure of spinel ferrites. A decrease in lattice constants of the prepared samples was observed with the substitution of Y ions and was attributed to the difference in ionic radii of Y3+ (0.95 Å) and Cd2+ (0.97 Å) ions. Cationic distributions, ionic radii of both tetrahedral and octahedral sites, tolerance factor, oxygen positional parameters, bond lengths, interatomic distances, positional parameters and bond length angles were calculated from XRD data. The morphology of the prepared ferrites was studied using SEM and results ratified the XRD results. EDS confirmed the presence of all inserted elements in Cd1-xYxFe2O4 composition. DC resistivity and drift mobility of soft-ferrites were found to be increased from 1.047 × 108–4.822 × 1010 Ω-cm and 5.87 × 10−12 – 1.045 × 10−14 cm2V−1s−1, respectively, at 523 K with yttrium content confirming the behavior of semiconductor materials. The optical band gap energy calculated from the UV–Vis pattern of the Cd1-xYxFe2O4 system was decreased from 3.6011 to 2.8153 eV. DC resistivity and optical band gaps exposed inverse relation. FTIR results revealed lower and upper-frequency absorption bands in the ranges of 419.31–417.01 cm−1 and 540.95–565.70 cm−1, respectively. Dielectric constant and dielectric losses were in decreasing order, while ac conductivity revealed rising behavior with increasing frequency. Results showed the potential of yttrium doped Cd nanoferrites for applications in high-frequency microwave absorbing devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号