首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   18篇
  国内免费   12篇
综合类   5篇
化学工业   71篇
金属工艺   10篇
机械仪表   4篇
建筑科学   11篇
矿业工程   1篇
轻工业   59篇
石油天然气   6篇
无线电   3篇
一般工业技术   8篇
冶金工业   1篇
原子能技术   2篇
自动化技术   6篇
  2023年   3篇
  2022年   10篇
  2021年   32篇
  2020年   8篇
  2019年   5篇
  2018年   6篇
  2017年   5篇
  2016年   7篇
  2015年   12篇
  2014年   12篇
  2013年   7篇
  2012年   3篇
  2011年   15篇
  2010年   11篇
  2009年   9篇
  2008年   6篇
  2007年   3篇
  2006年   11篇
  2005年   8篇
  2004年   4篇
  2003年   4篇
  2000年   3篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
排序方式: 共有187条查询结果,搜索用时 31 毫秒
101.
Particulate autogenous tooth roots are used for alveolar bone augmentation surgery; however, dental plaque may provoke an inflammatory response that may counteract the desired graft consolidation process. Traditional mechanical cleaning of extracted teeth may be of support to lower a possible inflammatory response of the autograft. To test this assumption, extracted porcine teeth were left either uncleaned or underwent mechanical cleaning with a toothbrush and toothpaste before being fragmented and subjected to acid lysis, termed as unclean acid dentine lysate (ucADL) and clean acid dentine lysate (cADL), respectively. The inflammatory responses of murine macrophage RAW 264.7 cells being exposed to the respective acid dentine lysates were evaluated at the level of inflammatory gene expression and IL6 immunoassays. We report here that acid lysates obtained from uncleaned teeth provoked a robust increase in IL1β, IL6, and COX2 in RAW 264.7 cells. The mechanical removal of dental plaque significantly reduced the inflammatory response. Consistently, Limulus tests revealed that tooth cleaning lowers the presence of endotoxins in dentine lysates. To further prove the involvement of endotoxins, a toll-like receptor 4 (TLR4) inhibitor TAK242 was introduced. TAK242 abolished the inflammatory response provoked by acid lysates obtained from uncleaned teeth in RAW 264.7 cells. Moreover, nuclear translocation and phosphorylation of the TLR4 downstream NFκB-p65 were attenuated at the presence of cleaned versus uncleaned dentine lysates. Taken together, our data support the importance of dental plaque removal of teeth being extracted for alveolar bone augmentation surgery.  相似文献   
102.
Fusobacterium nucleatum is a common member of the oral microbiota. However, this symbiont has been found to play an active role in disease development. As a Gram-negative bacterium, F. nucleatum has a protective outer membrane layer whose external leaflet is mainly composed of lipopolysaccharides (LPSs). LPSs play a crucial role in the interaction between bacteria and the host immune system. Here, we characterised the structure of the O-antigen and lipid A from F. nucleatum ssp. animalis ATCC 51191 by using a combination of GC-MS, MALDI and NMR techniques. The results revealed a novel repeat of the O-antigen structure of the LPS, [→4)-β-d -GlcpNAcA-(1→4)-β-d -GlcpNAc3NAlaA-(1→3)-α-d -FucpNAc4NR-(1→], (R=acetylated 60 %), and a bis-phosphorylated hexa-acylated lipid A moiety. Taken together these data showed that F. nucleatum ATCC 51191 has a distinct LPS which might differentially influence recognition by immune cells.  相似文献   
103.
Plant-based nutritional supplementation has been shown to attenuate and reduce mortality in the processes of both acute and chronic disorders, including diabetes, obesity, cardiovascular disease, cancer, inflammatory diseases, and neurological and neurodegenerative disorders. Low-level systemic inflammation is an important contributor to these afflictions and diets enriched in phytochemicals can slow the progression. The goal of this study was to determine the impact of lipopolysaccharide (LPS)-induced inflammation on changes in glucose and insulin tolerance, performance enhancement, levels of urinary neopterin and concentrations of neurotransmitters in the striatum in mouse models. Both acute and chronic injections of LPS (2 mg/kg or 0.33 mg/kg/day, respectively) reduced glucose and insulin tolerance and elevated neopterin levels, which are indicative of systemic inflammatory responses. In addition, there were significant decreases in striatal neurotransmitter levels (dopamine and DOPAC), while serotonin (5-HT) levels were essentially unchanged. LPS resulted in impaired execution in the incremental loading test, which was reversed in mice on a supplemental plant-based diet, improving their immune function and maintaining skeletal muscle mitochondrial activity. In conclusion, plant-based nutritional supplementation attenuated the metabolic changes elicited by LPS injections, causing systemic inflammatory activity that contributed to both systemic and neurological alterations.  相似文献   
104.
Skeletal muscle atrophy, which occurs in lipopolysaccharide (LPS)-induced sepsis, causes a severe muscle function reduction. The increased autophagy contributes to sepsis-induced skeletal muscle atrophy in a model of LPS injection, increasing LC3II/LC3I ratio, autophagy flux, and autophagosomes. Angiotensin-(1-7) (Ang-(1-7)) has anti-atrophic effects via the Mas receptor in skeletal muscle. However, the impact of Ang-(1-7) on LPS-induced autophagy is unknown. In this study, we determined the effect of Ang-(1-7) on sepsis-induced muscle autophagy. C57BL6 wild-type (WT) mice and mice lacking the Mas receptor (KO Mas) were injected with LPS together with the systemic administration of Ang-(1-7) to determine autophagy in skeletal muscle. We also evaluated autophagy and p38 and c-Jun N-terminal kinase (JNK)activation. Our results show that Ang-(1-7) prevents LPS-induced autophagy in the diaphragm, tibialis anterior, and gastrocnemius of WT mice, which is demonstrated by a decrease in the LC3II/LC3I ratio and mRNA levels of lc3b and ctsl. This effect was lost in KO Mas mice, suggesting the role of the Mas receptor. The results in C2C12 cells show that Ang-(1-7) reduces several LPS-dependent effects, such as autophagy (LC3II/LC3I ratio, autophagic flux, and autophagosomes), activation of p38 and JNK, B-cell lymphoma-2 (BCL2) phosphorylation, and disassembly of the Beclin1/BCL2 complex. In conclusion, Ang-(1-7)/Mas receptor reduces LPS-induced autophagy in skeletal muscle. In vitro assays indicate that Ang-(1-7) prevents LPS-induced autophagy and modifies the MAPK signaling and the disassembly of a complex involved at the beginning of autophagy.  相似文献   
105.
It has long been understood that some proteins undergo conformational transitions en route to the Michaelis Complex to allow chemistry. Examination of crystal structures of glycosyltransferase enzymes in the GT-B structural class reveals that the presence of ligand in the active site triggers an open-to-closed conformation transition, necessary for their catalytic functions. Herein, we describe microsecond molecular dynamics simulations of two distantly related glycosyltransferases that are part of the GT-B structural superfamily, HepI and GtfA. Simulations were performed using the open and closed conformations of these unbound proteins, respectively, and we sought to identify the major dynamical modes and communication networks that interconnect the open and closed structures. We provide the first reported evidence within the scope of our simulation parameters that the interconversion between open and closed conformations is a hierarchical multistep process which can be a conserved feature of enzymes of the same structural superfamily. Each of these motions involves of a collection of smaller molecular reorientations distributed across both domains, highlighting the complexities of protein dynamic involved in the interconversion process. Additionally, dynamic cross-correlation analysis was employed to explore the potential effect of distal residues on the catalytic efficiency of HepI. Multiple distal nonionizable residues of the C-terminal domain exhibit motions anticorrelated to positively charged residues in the active site in the N-terminal domain involved in substrate binding. Mutations of these residues resulted in a reduction in negatively correlated motions and an altered enzymatic efficiency that is dominated by lower Km values with kcat effectively unchanged. The findings suggest that residues with opposing conformational motions involved in the opening and closing of the bidomain HepI protein can allosterically alter the population and conformation of the “closed” state, essential to the formation of the Michaelis complex. The stabilization effects of these mutations likely equally influence the energetics of both the ground state and the transition state of the catalytic reaction, leading to the unaltered kcat. Our study provides new insights into the role of conformational dynamics in glycosyltransferase’s function and new modality to modulate enzymatic efficiency.  相似文献   
106.
Scope : Curcuma longa (turmeric) is a folk medicine in South and Southeast Asia, which has been widely used to alleviate chronic inflammation. Aromatic‐turmerone is one of the main components abundant in turmeric essential oil. However, little information is available from controlled studies regarding its biological activities and underlying molecular mechanisms against chronic inflammation in the brain. In the current study, we employed a classical LPS model to study the effect and mechanism of aromatic‐turmerone on neuroinflammation. Methods and results : The effects of aromatic‐turmerone were studied in LPS‐treated mice and BV2 cells. The cognitive function assays, protein analyses, and histological examination were performed. Oral administration of aromatic‐turmerone could reverse LPS‐induced memory disturbance and normalize glucose intake and metabolism in the brains of mice. Moreover, aromatic‐turmerone significantly limited brain damage, through inhibiting the activation of microglia and generation of inflammatory cytokines. Further study in vitro revealed that aromatic‐turmerone targeted Toll‐like receptor 4 mediated downstream signaling, and lowered the release of inflammatory mediators. Conclusion : These observations indicate that aromatic‐turmerone is effective in preventing brain damage caused by neuroinflammation and may be useful in the treatment of neuronal inflammatory diseases.  相似文献   
107.
Astaxanthin, a potent antioxidant carotenoid, plays a major role in modulating the immune response. In this study, we examined the immunomodulatory effects of astaxanthin on cytokine production in primary cultured lymphocytes both in vitro and ex vivo. Direct administration of astaxanthin (70–300 nM) did not produce cytotoxicity in lipopolysaccharide (LPS, 100 µg/ mL)- or concanavalin A (Con A, 10 µg/ mL)-activated lymphocytes, whereas astaxanthin alone at 300 nM induced proliferation of splenic lymphocytes (p < 0.05) in vitro. Although astaxanthin, alone or with Con A, had no apparent effect on interferon (INF-γ) and interleukin (IL-2) production in primary cultured lymphocytes, it enhanced LPS-induced INF-γ production. In an ex vivo experiment, oral administration of astaxanthin (0.28, 1.4 and 7 mg/kg/day) for 14 days did not cause alterations in the body or spleen weights of mice and also was not toxic to lymphocyte cells derived from the mice. Moreover, treatment with astaxanthin significantly increased LPS-induced lymphocyte proliferation ex vivo but not Con A-stimulated lymphocyte proliferation ex vivo. Enzyme linked immunosorbent assay (ELISA) analysis revealed that administration of astaxanthin significantly enhanced INF-γ production in response to both LPS and Con A stimulation, whereas IL-2 production increased only in response to Con A stimulation. Also, astaxanthin treatment alone significantly increased IL-2 production in lymphocytes derived from mice, but did not significantly change production of INF-γ. These findings suggest that astaxanthin modulates lymphocytic immune responses in vitro, and that it partly exerts its ex vivo immunomodulatory effects by increasing INF-γ and IL-2 production without inducing cytotoxicity.  相似文献   
108.
将乳过氧化物酶体系(LPS)、臭氧与乳酸链球菌素(Nisin)三种保鲜剂直接用于冷却猪肉的保鲜研究,通过对冷却猪肉在冷藏过程中微生物、感官和理化指标的测定,结果表明实验组的保鲜效果都显著地优于对照组,而实验组的保鲜效果依次是LPS处理组优于Nisin处理组优于臭氧处理组。  相似文献   
109.
110.
Support of milk production in modern dairy cows demands a large proportion of its own metabolic resources, such as glucose, which might be required under stressful situations. The aim of the experiment was to test the hypothesis that acute immune stress shifts oxidative metabolism to glycolysis. Two mammary quarters in 6 Holstein cows were infused with lipopolysaccharide (LPS), whereas the 2 counter quarters served as controls to the treatment. An additional 6 cows were infused with saline and served as running controls. The LPS challenge induced dramatic transient increases in milk lactate (75-fold) and malate (11-fold) concentrations (both markers of glycolysis) at 24 h posttreatment. No significant changes in lactate and malate concentrations were recorded in control quarters and control animals, indicating that the effect of LPS was restricted to the treated gland. The LPS challenge induced a dramatic transient decrease in milk yield, and lactose and citrate (a marker of mitochondrial metabolism) secretion at 24 h posttreatment. The kinetics were inversely proportional to those of lactate and malate concentrations. Thus, our data suggest that LPS challenge induces acute conversion of epithelial cell metabolism from principally mitochondrial-oxidative to principally cytosolic (glycolytic), which allows the diversion of metabolic resources normally used to synthesize milk to support the immune system. An in vitro bacterial growth test showed that concentrations of lactate, malate, and lactose equivalent to those found in the in vivo experiment delayed and reduced the growth of a pathogenic Escherichia coli strain, suggesting that they play a role in diminution of bacterial multiplication in the mammary gland.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号