首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67921篇
  免费   7613篇
  国内免费   2861篇
电工技术   2070篇
技术理论   2篇
综合类   4261篇
化学工业   31838篇
金属工艺   4492篇
机械仪表   1714篇
建筑科学   996篇
矿业工程   1539篇
能源动力   5259篇
轻工业   1798篇
水利工程   103篇
石油天然气   2514篇
武器工业   1001篇
无线电   2267篇
一般工业技术   13428篇
冶金工业   2484篇
原子能技术   280篇
自动化技术   2349篇
  2024年   118篇
  2023年   927篇
  2022年   1284篇
  2021年   2060篇
  2020年   1983篇
  2019年   1782篇
  2018年   1860篇
  2017年   2078篇
  2016年   2481篇
  2015年   2794篇
  2014年   3615篇
  2013年   3720篇
  2012年   4280篇
  2011年   5025篇
  2010年   3866篇
  2009年   4273篇
  2008年   3550篇
  2007年   4582篇
  2006年   4186篇
  2005年   3673篇
  2004年   3193篇
  2003年   2937篇
  2002年   2574篇
  2001年   2113篇
  2000年   1863篇
  1999年   1480篇
  1998年   1222篇
  1997年   961篇
  1996年   767篇
  1995年   656篇
  1994年   568篇
  1993年   406篇
  1992年   343篇
  1991年   269篇
  1990年   259篇
  1989年   185篇
  1988年   92篇
  1987年   66篇
  1986年   38篇
  1985年   54篇
  1984年   51篇
  1983年   30篇
  1982年   35篇
  1981年   16篇
  1980年   8篇
  1979年   17篇
  1978年   10篇
  1977年   7篇
  1976年   4篇
  1951年   29篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
41.
为了开发β受体阻断剂新药(S)-噻吗洛尔半水合物,采用3-吗啉-4-氯-1,2,5-噻二唑为起始原料,经水解反应得到中间体1(3-吗啉-4-羟基-1,2,5-噻二唑)。中间体1与R-环氧氯丙烷发生醚化反应,经后处理及重结晶得到中间体2 {(R)-4-[4-(环氧乙烷-2-基甲氧基)-1,2,5-噻二唑-3-基]吗啉}。中间体2经胺化反应、马来酸成盐及重结晶得到(S)-马来酸噻吗洛尔。(S)-马来酸噻吗洛尔经游离、纯水转晶得到符合药典标准的(S)-噻吗洛尔半水合物,总收率14.05%且e.e.值为99.66%。最终成品经IR、1H-NMR、13C-NMR、MS、TGA、DSC表征,并优化各步反应条件。结果表明:以三乙胺为醚化反应缚酸剂75 ℃反应最佳;以乙醇为胺化反应溶剂46 ℃反应16 h最佳;S-噻吗洛尔的转晶拆分以水作溶剂,比传统不对称合成工艺安全稳定,操作简单,适合工业化生产。  相似文献   
42.
Fiber orientations play the decisive role in grinding process of woven ceramic matrix composites, but the influence of woven fibers in grinding process is not clear. This paper studies the surface quality and grinding force by comparing different woven surfaces. Through a series of experiments in optimized sampling conditions, we analyze characteristics of the material surface topography height, wave distribution and surface support properties in details. And we find some outstanding characteristics of the surface microstructure. We also study the influence of grinding processing parameters on surface microstructure. The results show that machining surface which contains more parallel fibers is rougher and more keenness than gauss surface. Grinding wheel speed and depth of cut have great influence on surface topography and surface support properties. And it is discovered that grinding forces are also highly dependent on fiber orientations. The mechanism of the grinding phenomena is also analyzed in this paper according to knowledge of fracture mechanics and mechanical damage phenomenology. The research obtained will be an important technical support on improving the processing quality of woven ceramic matrix composites.  相似文献   
43.
The study presents the preparation of the new magnetic nanocomposite based on PLGA and magnetite. The PLGA used to obtain the magnetic nanocomposites was synthesized by the copolymerization of lactic acid with glycolic acid, in the presence of tin octanoate [Sn(Oct)2] as catalyst, by polycondensation procedure. Magnetite was obtained by co-precipitation from aqueous salt solutions FeCl2/FeCl3. The particles size of magnetite was 420 nm, and the saturation magnetization 62.78 emu/g, while the PLGA/magnetite nanocomposite size was 864 nm and the saturation magnetization 39.44 emu/g. The magnetic nanocomposites were characterized by FT-IR, DLS technique, SEM, VSM and simultaneous thermal analyses (TG–FTIR–MS). The polymer matrix PLGA acts as a shell and carrier for the active component, while magnetite is the component which makes targeting possible by external magnetic field manipulation. Based on the gases resulted by thermal degradation of PLGA copolymer, using the simultaneous analysis TG–FTIR–MS, a possible degradation mechanism was proposed.  相似文献   
44.
An experimental investigation on the mechanism of porosity formation during the laser joining of carbon fiber reinforced polymer (CFRP) and steel is presented. The porosity morphology and distribution were characterized by optical and scanning electron microscopy, and the thermal pyrolysis behaviors were investigated by thermal analysis and designed back-side cooling experiments. The results show that there are two types of porosities in CFRP. Porosity I only appears when the heat input is more than 77.8 J/mm. It has a smooth inner wall and distributes near the bonding interface between CFRP and steel at the central area of melted zone, which is caused by gaseous products such as CO2, NH3, H2O, and hydrocarbons produced by the pyrolysis of CFRP. Porosity II can be seen under all joining conditions. It has a rough inner wall and distributes far away from the bonding interface, concentrating at the final solidification locations. Porosity II is caused by the shrinkage of melted CFRP during solidification stage.  相似文献   
45.
《Ceramics International》2020,46(5):6129-6135
The design of functional anti-wetting ceramic coatings is always a bottleneck restricting the development of ceramic techniques. This study proposes a liquid phase synthesis method to fabricate α-Fe2O3 (III) ceramic powders with promising applications and introduces a facile electrophoretic deposition (EPD) technique to construct the corresponding functionalized hydrophobic films – superhydrophobic functionalized α-Fe2O3 ceramic films (SFOFS) with roughly even distribution and a high water contact angle (CA) of 169°±1° – followed by heat posttreatments. The microtopography and crystalline structures of the product were investigated by FESEM, EDX, and XRD techniques. The EPD controllability of SFOFS was studied by adjusting the EPD time and the applied field strengths. In addition, the SFOFS show excellent long-term anti-wetting properties for twenty-four months after undergoing a series of tests, including soaking, water droplet impacting, immersion by droplets with different surface tensions and exposure to different gases and relative humidity conditions, etc. This study substantially helps the design of other kinds of functional anti-wetting films through the proposed convenient method beyond the oxide limit.  相似文献   
46.
Crack initiation and propagation in three braided SiC/SiC composite tubes with different braiding angles are investigated by in situ tensile tests with synchrotron micro-computed tomography. Crack networks are precisely detected after an image subtraction procedure based on Digital Volume Correlation. FFT based simulations are performed on the full-resolution 3D images to assess elastic stress/strain fields. Quantitative measurements of the crack geometries are performed using a novel method based on grey levels. The results show that braiding angle has no obvious effect on the location of crack onsets (initiation always occurs at tow interfaces), whereas it significantly affects the paths of crack propagation. This work provides an explicit demonstration of the crack propagation scenarios with respect to the mesoscopic fibre architectures.  相似文献   
47.
Heat exchanger network synthesis (HENS) has progressed by using mathematical programming-based simultaneous methodology. Although various considerations such as non-isothermal mixing and bypass streams are applied to consider real world alternatives in modeling phase, many challenges are faced because of its properties within non-convex mixed-integer nonlinear programming (MINLP). We propose a modified superstructure, which contains a utility substage for use in considering multiple utilities in a simultaneous MINLP model. To improve model size and convergence, fixed utility locations according to temperature and series connections between utilities are suggested. The numbers of constraints, discrete, and continuous variables show that overall model size decreases compared with previous research. Thus, it is possible to expand the feasible search area for reaching the nearest global solution. The model's effectiveness and applications are exemplified by several literature problems, where it is used to deduce a network superior to that of any other reported methodology.  相似文献   
48.
A method for simultaneous measurement of the thickness and density for Glass Fiber-Reinforced Polymer (GFRP) laminate plates with ultrasonic waves in C-Scan mode is presented in the form of maps. The method uses three different signals in immersion pulse-echo C-Scan mode. The maps obtained based on the density show the heterogeneity of the material at high resolution at the pixel level (1 × 1 mm2) and therefore they represent an efficient tool to assess and evaluate the damage of the composite structures after manufacturing and after an applied mechanical loading.  相似文献   
49.
In this work, the effect of ZrB2 (0, 5, 10 and 20?vol%) ceramic reinforcement on densification, structure, and properties of mechanically alloyed Al was investigated. The milling of Al-ZrB2 powder compositions resulted in formation of agglomerates with varied size. In particular, the size of agglomerates was reduced considerably with increased addition of ZrB2 to Al. Interestingly, the densification of hot pressed Al increased from 96.06% to 99.22% with ZrB2 addition. The reduction of agglomerates size was attributed to the enhanced densification of Al-ZrB2 composites. Pure Al showed relatively low hardness (0.94?GPa) and it was improved to 1.78?GPa with the addition of 20?vol% ZrB2. The mechanical properties have significantly been improved for Al-ZrB2 composites. Especially Al - 20?vol% ZrB2 possessed a very high yield strength (529?MPa), compressive strength (630?MPa) and compressive strain of 19.25%. Realization of such a good combination of mechanical properties is the highest ever reported for Al composites so far in the literature. The coefficient of friction (COF) of Al-ZrB2 varied narrowly between 0.33 and 0.40 after dry sliding wear against steel disc. The wear rate of Al-ZrB2 composites was within mild wear regime and varied between 98.88?×?10?6 and 34.66?×?10?6 mm3/Nm. Among all the compositions, Al - 20?vol% ZrB2 composite exhibited the lowest wear rate and high wear rate was noted for pure Al. Mild abrasion, tribo-oxidation, third body wear (wear debris) and delamination were the major material removal mechanisms for Al-ZrB2 composites. Overall the hardness, strength and wear resistance of Al - 20?vol% ZrB2 composite was improved by 84.3%, 84.3% and 64.2%, respectively when compared to pure Al.  相似文献   
50.
Core–shell structures have been proposed to improve the electrical properties of negative-temperature coefficient (NTC) thermistor ceramics. In this work, Al2O3-modified Co1.5Mn1.2Ni0.3O4 NTC thermistor ceramics with adjustable electrical properties were prepared through citrate-chelation followed by conventional sintering. Co1.5Mn1.2Ni0.3O4 powder was coated with a thin Al2O3 shell layer to form a core–shell structure. Resistivity (ρ) increased rapidly with increasing thickness of the Al2O3 layer, and the thermal constant (B) varied moderately between 3706 and 3846 K. In particular, Co1.5Mn1.2Ni0.3O4@Al2O3 ceramic with 0.08 wt% Al2O3 showed the increase of ρ double, and the change in its B was less than 140 K. The Co1.5Mn1.2Ni0.3O4@Al2O3 NTC ceramics showed high stability, and their grain size was relatively uniform due to the protection offered by the shell. The aging coefficient of the ceramic was less than 0.2% after aging for 500 hours at 125°C. Taken together, the results indicate that as-prepared Co1.5Mn1.2Ni0.3O4@Al2O3 NTC ceramics with a core–shell structure may be promising candidates for application as wide-temperature NTC thermistor ceramics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号