首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28274篇
  免费   2189篇
  国内免费   2462篇
电工技术   443篇
技术理论   1篇
综合类   2199篇
化学工业   6256篇
金属工艺   3261篇
机械仪表   1001篇
建筑科学   816篇
矿业工程   316篇
能源动力   554篇
轻工业   2357篇
水利工程   169篇
石油天然气   414篇
武器工业   305篇
无线电   4938篇
一般工业技术   7161篇
冶金工业   1155篇
原子能技术   325篇
自动化技术   1254篇
  2024年   65篇
  2023年   420篇
  2022年   519篇
  2021年   922篇
  2020年   812篇
  2019年   844篇
  2018年   743篇
  2017年   948篇
  2016年   927篇
  2015年   975篇
  2014年   1410篇
  2013年   1741篇
  2012年   1682篇
  2011年   2058篇
  2010年   1523篇
  2009年   1738篇
  2008年   1615篇
  2007年   1779篇
  2006年   1692篇
  2005年   1482篇
  2004年   1298篇
  2003年   1020篇
  2002年   937篇
  2001年   768篇
  2000年   713篇
  1999年   576篇
  1998年   534篇
  1997年   453篇
  1996年   410篇
  1995年   348篇
  1994年   316篇
  1993年   265篇
  1992年   261篇
  1991年   238篇
  1990年   198篇
  1989年   134篇
  1988年   99篇
  1987年   52篇
  1986年   52篇
  1985年   72篇
  1984年   76篇
  1983年   44篇
  1982年   46篇
  1981年   21篇
  1980年   14篇
  1979年   13篇
  1977年   15篇
  1976年   10篇
  1975年   12篇
  1974年   10篇
排序方式: 共有10000条查询结果,搜索用时 437 毫秒
21.
Current grain growth models have evolved to account for the relationship between grain boundary energy/mobility anisotropy and the five degrees of grain boundary character. However, the role of grain boundary networks on overall growth kinetics remains poorly understood. To experimentally investigate this problem, a highly textured Al2O3 was fabricated by colloidal casting in a strong magnetic field to engineer a unique spatial distribution of grain boundary character. Microstructural evolution was quantified and compared to an untextured sample. From this comparison, a prevalence of (0001)/(0001) terminated grain boundaries with anisotropic networks were identified in the textured sample. These boundaries and their networks were found to be driving grain growth at a faster rate than predicted by models. These findings will allow better modelling of grain growth in real systems by experimentally exploring the impact thereon of grain boundary plane anisotropy and relative energy/mobility differences between neighboring boundaries.  相似文献   
22.
Structure modification has been found to tune significantly the transparent-conducting performance, especially mobility and conductivity of hydrogenated Ga-doped ZnO (HGZO) films. The strong correlation between film thickness and mobility of the films is revealed. The mobility increases quickly with increasing the thickness from 350 to 900 nm, and then tends to be saturated at further thicknesses. A higher mobility than 50 cm2/Vs can be achieved, which is an extra-high value for polycrystalline ZnO films deposited by using the sputtering technique. The thickness-dependent mobility originates from scatterings on grain boundaries and dislocation-induced defects controlled by thin-film growth. Based on the Volmer-Weber model, an expansion model is built up to describe the thickness-dependent crystal growth of the HGZO films, especially at the thick films. As a result, the 800 nm-thick HGZO film obtains the highest performance with high mobility of 51.5 cm2/Vs, low resistivity of 5.3 × 10?4 Ωcm, and good transmittance of 83.3 %.  相似文献   
23.
Stunting adversely affects physical and mental outcomes of children. It has not been examined whether household air pollution from solid fuel combustion is a risk factor for stunting in children. In a total of 41,439 children aged 6-17 across China, height was measured using a unified protocol. Multivariable linear regression models and logistic regression models were used to assess the associations of solid fuel use for cooking/heating with stunting in children. Adjusted for covariates, cooking/heating with solid fuel was significantly associated with a lower z-score for height for age and sex (β = −0.21 [−0.32 to −0.09] and −0.17 [−0.31 to −0.03], respectively) and an increased risk of stunting with an estimated ORs of 1.34 [1.07~1.68] and 1.37 [1.02~1.83], respectively. The risk of stunting associated with solid fuel use was statistically significant in high-age children. And the effect was greater on girls than on boys, though the difference was not statistically significant. Our study suggested that Chinese children living in households using solid fuel had a significantly higher risk of stunting than those living in households using cleaner fuel.  相似文献   
24.
Tunable and ultrabroadband mid-infrared (MIR) emissions in the range of 2.5–4.5 μm are firstly reported from Co2+-doped nano-chalcogenide (ChG) glass composites. The composites embedded with a variety of binary (ZnS, CdS, ZnSe) and ternary (ZnCdS, ZnSSe) ChG nanocrystals (NCs) can be readily obtained by a simple one-step thermal annealing method. They are highly transparent in the near- and mid-infrared wavelength region. Low-cost and commercially available Er3+-doped fiber lasers can be used as the excitation source. By crystal-field engineering of the embedded NCs through cation- or anion-substitution, the emission properties of Co2+ including its emission peak wavelength and bandwidth can be tailored in a broad spectral range. The phenomena can be accounted for by crystal-field theory. Such nano-ChG composites, perfectly filling the 3–4 μm spectral gap between the oscillations of Cr2+ and Fe2+ doped IIVI ChG crystals, may find important MIR photonic applications (e.g., gas sensing), or can be used directly as an efficient pump source for Fe2+: IIVI crystals which are suffering from lack of pump sources.  相似文献   
25.
The non-equiatomic FeCoNiAlSi alloy is prepared by the Bridgman solidification (BS) technique at different withdrawal velocities (V = 30, 100, and 200 μm/s). Various characterization techniques have been used to study the microstructure and crystal orientation. The morphological evolutions accompanying the crystal growth of the alloy prepared at different withdrawal velocities are nearly the same, from equiaxed grains to columnar crystals. The transition of coercivity is closely related to the local microstructure, while the saturation magnetization changes little at different sites. The coercivity can be significantly reduced from the equiaxed grain area to the columnar crystal area when the applied magnetic field direction is parallel to the crystal growth direction, no matter what is the withdrawal velocity. In addition, the alloy possesses magnetic anisotropy when the applied magnetic field is in different directions.  相似文献   
26.
The crystallization phenomena of spinel in CaO-MgO-Al2O3-SiO2-Fe2O3 glass have received much attention due to the particular role in preparation of glass-ceramic materials, which represent an effective option to manage hazardous waste. In this study, both preliminary spinel and secondary spinel were precipitated in the precursor glass. The formation of these spinel was meticulously assessed by a combination of X-ray diffractometry and scanning electron microscopy. The structure of the microenvironment in the precursor glass was characterized by Raman spectrums. These advanced techniques highlight the potential for one-step crystallization of the glass. The investigation, which focused on one-step crystallization, demonstrated the growth of pyroxene on spinel accompanying a migration of chromium. The results also show the microstructure of the obtained glass-ceramic was very dependent on the heat-treat temperature. This study not only unambiguously reveals the precipitation mechanisms of spinel but also provides more documentation for one-step crystallization in the glass-ceramics field.  相似文献   
27.
Assessment of biological diagnostic factors providing clinically-relevant information to guide physician decision-making are still needed for diseases with poor outcomes, such as non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) is a promising molecule in the clinical management of NSCLC. While the EGFR transmembrane form has been extensively investigated in large clinical trials, the soluble, circulating EGFR isoform (sEGFR), which may have a potential clinical use, has rarely been considered. This study investigates the use of sEGFR as a potential diagnostic biomarker for NSCLC and also characterizes the biological function of sEGFR to clarify the molecular mechanisms involved in the course of action of this protein. Plasma sEGFR levels from a heterogeneous cohort of 37 non-advanced NSCLC patients and 54 healthy subjects were analyzed by using an enzyme-linked immunosorbent assay. The biological function of sEGFR was analyzed in vitro using NSCLC cell lines, investigating effects on cell proliferation and migration. We found that plasma sEGFR was significantly decreased in the NSCLC patient group as compared to the control group (median value: 48.6 vs. 55.6 ng/mL respectively; p = 0.0002). Moreover, we demonstrated that sEGFR inhibits growth and migration of NSCLC cells in vitro through molecular mechanisms that included perturbation of EGF/EGFR cell signaling and holoreceptor internalization. These data show that sEGFR is a potential circulating biomarker with a physiological protective role, providing a first approach to the functional role of the soluble isoform of EGFR. However, the impact of these data on daily clinical practice needs to be further investigated in larger prospective studies.  相似文献   
28.
Nanocrystalline nickel oxide (NiO) was prepared from nickel hydroxide by Spark plasma sintering (SPS) and the mechanisms involved in the densification of NiO were studied. Reverse precipitated nickel hydroxide powders were SPS processed at 400, 600 and 700?°C with 70?MPa pressure. Pure NiO with 12?nm crystallite size formed after 400?°C sintering process. However NiO grains had grown to 18 and 38?nm after 600 and 700?°C sintering respectively. NiO pellets prepared using 600 and 700?°C SPS sintering schedules had relative densities of 83% and 94% respectively. Two displacement rate regimes were observed during densification of NiO in both 600 and 700?°C sintering processes. Decomposition of nickel hydroxide and particle sliding of NiO led to first displacement rate maximum while inverse Hall-Petch based plastic deformation facilitated densification during the constant second displacement rate regime. No densification occurred during sintering holding times indicating the limited role that diffusion played during densification.  相似文献   
29.
The size-controlled preparation of Mo powders is always a challenge and important task in the molybdenum metallurgy. In the current study, Mo powders with controllable sizes are synthesized by hydrogen reduction of MoO2 powders with the assistance of Mo nuclei in the range of 900–1100 °C. The influences of the particle sizes of Mo nuclei, the additive amount as well as reaction temperature on the morphology and particle sizes of the final products are studied. For the hydrogen reduction of MoO2 without any additive, the obtained Mo powders always have large particle sizes. However, the addition of small amounts of nuclei in MoO2 can help Mo nucleate dispersedly, and the growth of Mo could be also controlled by adjusting the sizes of added nuclei, amount of addition and the reaction temperature. With the addition of Mo nuclei, the different sizes of Mo powders with the good dispersity can be prepared. As adding commercial Mo powders with the particle size of about 2.03 μm, the micron-sized Mo powders ranged from 2.11 μm to 3.25 μm could be prepared. While for the case of adding ultrafine Mo nuclei of about 170 nm, Mo powders from 0.28 μm to 0.88 μm can be obtained. Moreover, the more the amounts of nuclei added and the lower the reaction temperature (in the range of 900–1100 °C) is, the smaller the particle size of the prepared Mo powder will be. The current method is a facile and feasible method, and is potential to be used for industrial production of Mo powder with controllable particle sizes.  相似文献   
30.
Fatigue crack growth behaviour of Ti–6Al–2Zr–1.5Mo–1.5V (VT-20 a near-α Ti alloy) was studied in lamellar, bimodal and acicular microstructural conditions. Fatigue crack growth tests at both increasing and decreasing stress intensity factor range values were performed at ambient temperature and a loading ratio of 0.3 using compact tension samples. Lamellar and acicular microstructures showed lower fatigue crack growth rates as compared to the bimodal microstructure due to the tortuous nature of cracks in the former and the cleavage of primary α in the latter. The threshold stress intensity factor range was highest for acicular microstructure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号