首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6038篇
  免费   731篇
  国内免费   200篇
电工技术   56篇
综合类   329篇
化学工业   1269篇
金属工艺   142篇
机械仪表   233篇
建筑科学   155篇
矿业工程   30篇
能源动力   71篇
轻工业   1651篇
水利工程   10篇
石油天然气   14篇
武器工业   27篇
无线电   812篇
一般工业技术   1761篇
冶金工业   48篇
原子能技术   3篇
自动化技术   358篇
  2024年   39篇
  2023年   311篇
  2022年   262篇
  2021年   470篇
  2020年   409篇
  2019年   346篇
  2018年   287篇
  2017年   292篇
  2016年   249篇
  2015年   253篇
  2014年   321篇
  2013年   329篇
  2012年   330篇
  2011年   383篇
  2010年   282篇
  2009年   283篇
  2008年   207篇
  2007年   324篇
  2006年   340篇
  2005年   284篇
  2004年   196篇
  2003年   141篇
  2002年   119篇
  2001年   109篇
  2000年   104篇
  1999年   69篇
  1998年   46篇
  1997年   33篇
  1996年   31篇
  1995年   30篇
  1994年   26篇
  1993年   20篇
  1992年   9篇
  1991年   11篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1959年   1篇
排序方式: 共有6969条查询结果,搜索用时 15 毫秒
101.
Flexible transparent supercapacitors (FTSs) have aroused considerable attention. Nonetheless, balancing energy storage capability and transparency remains challenging. Herein, a new type of FTSs with both excellent energy storage and superior transparency is developed based on PEDOT:PSS/MXene/Ag grid ternary hybrid electrodes. The hybrid electrodes can synergistically utilize the high optoelectronic properties of Ag grids, the excellent capacitive performance of MXenes, and the superior chemical stability of PEDOT:PSS, thus, simultaneously demonstrating excellent optoelectronic properties (T: ≈89%, Rs: ≈39 Ω sq−1), high areal specific capacitance, superior mechanical softness, and excellent anti-oxidation capability. Due to the excellent comprehensive performances of the hybrid electrodes, the resulting FTSs exhibit both high optical transparency (≈71% and ≈60%) and large areal specific capacitance (≈3.7 and ≈12 mF cm−2) besides superior energy storage capacity (P: 200.93, E: 0.24 µWh cm−2). Notably, the FTSs show not only excellent energy storage but also exceptional sensing capability, viable for human activity recognition. This is the first time to achieve FTSs that combine high transparency, excellent energy storage and good sensing all-in-one, which make them stand out from conventional flexible supercapacitors and promising for next-generation smart flexible energy storage devices.  相似文献   
102.
High-performance polymers are an important class of materials that are used in challenging conditions, such as in aerospace applications. Until now, 3D printing based on stereolithography processes can not be performed due to a lack of suitable materials. There is report on new materials and printing compositions that enable 3D printing of objects having extremely high thermal resistance, with Tg of 283 °C and excellent mechanical properties. The printing is performed by a low-cost Digital Light Processing printer, and the formulation is based on a dual-cure mechanism, photo, and thermal process. The main components are a molecule that has both epoxy and acrylate groups, alkylated melamine that enables a high degree of crosslinking, and a soluble precursor of silica. The resulting objects are made of hybrid materials, in which the silicon is present in the polymeric backbone and partly as silica enforcement particles.  相似文献   
103.
Bio-ink has gradually transited from ionic-crosslinking to photocrosslinking due to photocurable bio-hydrogel having good formability and biocompatibility. It is very important to understand and quantify the crosslinking process of photocurable hydrogels, otherwise, bioprinting cannot be standardized and scalable. However, there are few studies on hydrogel formation process and its photocrosslinking behavior which cannot be accurately predicted. Herein, the photoinitiated radical polymerized bio-hydrogels are taken as an example to establish the formation theory. Three typical crosslinking reactions are first distinguished. It is further proposed that not all double-bonds consumed during crosslinking contributeequally to polymerization. Then the concept of effective double-bond conversion (EDBC) is elicited. Deriving from EDBC, several important formation indices are defined. According to theory, it is predicted that slow crosslinking can improve the crosslinking degree. Furthermore, based on the slow crosslinking effect, a new strategy of projection-based 3D printing (PBP) is proposed, which significantly improved printing quality and efficiency. Overall, this work will fill the gap in hydrogel's formation theory, making it possible to accurately quantify the formation process.  相似文献   
104.
Conventional power sources encounter difficulties in achieving structural unitization with complex-shaped electronic devices because of their fixed form factors. Here, it is realized that an on-demand conformal Zn-ion battery (ZIB) on non-developable surfaces uses direct ink writing (DIW)-based nonplanar 3D printing. First, ZIB component (manganese oxide-based cathode, Zn powder-based anode, and UV-curable gel composite electrolyte) inks are designed to regulate their colloidal interactions to fulfill the rheological requirements of nonplanar 3D printing, and establish bi-percolating ion/electron conduction pathways, thereby enabling geometrical synchronization with non-developable surfaces, and ensuring reliable electrochemical performance. The ZIB component inks are conformally printed on arbitrary curvilinear substrates to produce embodied ZIBs that can be seamlessly integrated with complicated 3D objects (including human ears). The conformal ZIB exhibits a high fill factor (i.e., areal coverage of cells on underlying substrates, ≈100%) that ensures high volumetric energy density (50.5 mWh cmcell−3), which exceeds those of previously-reported shape-adaptable power sources.  相似文献   
105.
3D printing of conductive elastomers is a promising route to personalized health monitoring applications due to its flexibility and biocompatibility. Here, a one-part, highly conductive, flexible, stretchable, 3D printable carbon nanotube (CNT)-silicone composite is developed and thoroughly characterized. The one-part nature of the inks: i) enables printing without prior mixing and cures under ambient conditions; ii) allows direct dispensing at ≈100 µm resolution printability on nonpolar and polar substrates; iii) forms both self-supporting and high-aspect-ratio structures, key aspects in additive biomanufacturing that eliminate the need for sacrificial layers; and iv) lends efficient, reproducible, and highly sensitive responses to various tensile and compressive stimuli. The high electrical and thermal conductivity of the CNT-silicone composite is further extended to facilitate use as a flexible and stretchable heating element, with applications in body temperature regulation, water distillation, and dual temperature sensing and Joule heating. Overall, the facile fabrication of this composite points to excellent synergy with direct ink writing and can be used to prepare patient-specific wearable electronics for motion detection and cardiac and respiratory monitoring devices and toward advanced personal health tracking and bionic skin applications.  相似文献   
106.
Emerging soft ionotronics better match the human body mechanically and electrically compared to conventional rigid electronics. They hold great potential for human-machine interfaces, wearable and implantable devices, and soft machines. Among various ionotronic devices, ionic junctions play critical roles in rectifying currents as electrical p–n junctions. Existing ionic junctions, however, are limited in electrical and mechanical performance, and are difficult to fabricate and degrade. Herein, the design, fabrication, and characterization of tough transient ionic junctions fabricated via 3D ionic microgel printing is reported. The 3D printing method demonstrates excellent printability and allows one to fabricate ionic junctions of various configurations with high fidelity. By combining ionic microgels, degradable networks, and highly charged biopolymers, the ionic junctions feature high stretchability (stretch limit 27), high fracture energy (>1000 Jm−2), excellent electrical performance (current rectification ratio >100), and transient stability (degrade in 1 week). A variety of ionotronic devices, including ionic diodes, ionic bipolar junction transistors, ionic full-wave rectifiers, and ionic touchpads are further demonstrated. This study merges ionotronics, 3D printing, and degradable hydrogels, and will motivate the future development of high-performance transient ionotronics.  相似文献   
107.
Breathable, flexible, and highly sensitive pressure sensors have drawn increasing attention due to their potential in wearable electronics for body-motion monitoring, human-machine interfaces, etc. However, current pressure sensors are usually assembled with polymer substrates or encapsulation layers, thus causing discomfort during wearing (i.e., low air/vapor permeability, mechanical mismatch) and restricting their applications. A breathable and flexible pressure sensor is reported with nonwoven fabrics as both the electrode (printed with MXene interdigitated electrode) and sensing (coated with MXene/silver nanowires) layers via a scalable screen-printing approach. Benefiting from the multi-layered porous structure, the sensor demonstrates good air permeability with high sensitivity (770.86–1434.89 kPa−1), a wide sensing range (0–100 kPa), fast response/recovery time (70/81 ms), and low detection limit (≈1 Pa). Particularly, this sensor can detect full-scale human motion (i.e., small-scale pulse beating and large-scale walking/running) with high sensitivity, excellent cycling stability, and puncture resistance. Additionally, the sensing layer of the pressure sensor also displays superior sensitivity to humidity changes, which is verified by successfully monitoring human breathing and spoken words while wearing a sensor-embedded mask. Given the outstanding features, this breathable sensor shows promise in the wearable electronic field for body health monitoring, sports activity detection, and disease diagnosis.  相似文献   
108.
Tagging, tracking, or validation of products are often facilitated by inkjet-printed optical information labels. However, this requires thorough substrate pretreatment, ink optimization, and often lacks in printing precision/resolution. Herein, a printing method based on laser-driven deposition of solid polymer ink that allows for printing on various substrates without pretreatment is demonstrated. Since the deposition process has a precision of <1 µm, it can introduce the concept of sub-positions with overlapping spots. This enables high-resolution fluorescent labels with comparable spot-to-spot distance of down to 15 µm (444,444 spots cm−2) and rapid machine learning-supported readout based on low-resolution fluorescence imaging. Furthermore, the defined thickness of the printed polymer ink spots can be used to fabricate multi-channel information labels. Additional information can be stored in different fluorescence channels or in a hidden topography channel of the label that is independent of the fluorescence.  相似文献   
109.
Prior studies on carbon-filler based, conductive polymer composites have mainly investigated how conductive filler morphology and concentration can tailor a material's electrical conductivity and overlooks the effects of filler alignment due to the difficulty to control and quickly quantify the filler alignment. Here, direct ink write 3D printing's unique ability is utilized to control carbon fiber alignment with a single process parameter, velocity ratio, to instantaneously activate or deactivate the electrical network in composites. Maximum electrical conductivity is achieved by randomly aligning carbon fibers that enhances the chance of direct fiber-to-fiber contact and, thus, activating the electrical network. However, aligning the fibers by increasing the velocity ratio disrupts the electrical network by minimizing fiber-to-fiber contact that resulted in a drastic decrease in electrical conductivity by as much as five orders of magnitude in both short and long carbon fiber composites. With this study, this study demonstrates that electrically conductive or insulative composites can be fabricated sequentially with a single ink. This novel ability to instantaneously control the electrical conductivity of carbon fiber reinforced composites allow to directly embed conductive pathways into designs to 3D print multifunctional composites that are capable of localized heating and self-sensing.  相似文献   
110.
对抗样本攻击揭示了人脸识别系统可能存在不安全性和被攻击的方式。现有针对人脸识别系统的对抗样本攻击大多在数字域进行,然而从最近文献检索的结果来看,越来越多的研究开始关注如何能把带有对抗扰动的实物添加到人脸及其周边区域上,如眼镜、贴纸、帽子等,以实现物理域的对抗攻击。这类新型的对抗样本攻击能够轻易突破市面上现有绝大部分人脸活体检测方法的拦截,直接影响人脸识别系统的结果。尽管已有不少文献提出数字域的对抗攻击方法,但在物理域中复现对抗样本的生成并不容易且成本高昂。本文提出一种可从数字域方便地推广到物理域的对抗样本生成方法,通过在原始人脸样本中添加特定形状的对抗扰动来攻击人脸识别系统,达到误导或扮演攻击的目的。主要贡献包括:利用人脸关键点根据脸型构建特定形状掩膜来生成对抗扰动;设计对抗损失函数,通过训练生成器实现在数字域的对抗样本生成;设计打印分数损失函数,减小打印色差,在物理域复现对抗样本的生成,并通过模拟眼镜佩戴、真实场景光照变化等方式增强样本,改善质量。实验结果表明,所生成的对抗样本不仅能在数字域以高成功率攻破典型人脸识别系统VGGFace10,且可方便、大量地在物理域复现。本文方法揭示了人脸识别系统的潜在安全风险,为设计人脸识别系统的防御体系提供了很好的帮助。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号