首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64809篇
  免费   6267篇
  国内免费   3128篇
电工技术   2822篇
技术理论   1篇
综合类   4418篇
化学工业   13420篇
金属工艺   7452篇
机械仪表   4209篇
建筑科学   5709篇
矿业工程   2770篇
能源动力   2572篇
轻工业   3547篇
水利工程   1134篇
石油天然气   1981篇
武器工业   916篇
无线电   4377篇
一般工业技术   11399篇
冶金工业   5196篇
原子能技术   738篇
自动化技术   1543篇
  2024年   192篇
  2023年   1216篇
  2022年   1672篇
  2021年   2240篇
  2020年   2312篇
  2019年   2015篇
  2018年   1753篇
  2017年   2190篇
  2016年   2114篇
  2015年   2083篇
  2014年   3319篇
  2013年   3479篇
  2012年   4013篇
  2011年   4272篇
  2010年   3297篇
  2009年   3654篇
  2008年   3137篇
  2007年   4434篇
  2006年   4094篇
  2005年   3757篇
  2004年   3037篇
  2003年   2973篇
  2002年   2426篇
  2001年   1995篇
  2000年   1797篇
  1999年   1393篇
  1998年   1104篇
  1997年   859篇
  1996年   767篇
  1995年   601篇
  1994年   532篇
  1993年   391篇
  1992年   257篇
  1991年   191篇
  1990年   158篇
  1989年   146篇
  1988年   89篇
  1987年   41篇
  1986年   29篇
  1985年   36篇
  1984年   23篇
  1983年   26篇
  1982年   15篇
  1981年   8篇
  1980年   8篇
  1979年   5篇
  1975年   7篇
  1959年   4篇
  1955年   4篇
  1951年   11篇
排序方式: 共有10000条查询结果,搜索用时 22 毫秒
21.
We investigated some properties of the hydride Mg2FeH6 substituted with yttrium by a first principles calculation. Some experimental results showed that 4d transition metal, yttrium serves as a good catalyst for magnesium based hydrogen storage alloys, but there are a few theoretical studies about magnesium based hydrides substituted with it. Mg2FeH6 is regarded as a cheaper material than pure MgH2, while it is crystalized into Fm3m structure (space group 225). Although it has high hydrogen storage capacity, many investigations have not been devoted to it due to its extremely high thermodynamic stability. The yttrium substituted Mg2FeH6 exhibits very low energy of formation, and its desorption temperature, 75 °C is very suitable for practical hydrogen storage applications. Our results showed that Mg2FeH6 is destabilized effectively by yttrium substitution and introducing vacancy defects has additive effect to the improvement of dehydrogenation performance.  相似文献   
22.
We propose all printed and highly stable organic resistive switching device (ORSD) based on graphene quantum dots (G-QDs) and polyvinylpyrrolidone (PVP) composite for non-volatile memory applications. It is fabricated by sandwiching G-QDs/PVP composite between top and bottom silver (Ag) electrodes on a flexible substrate polyethylene terephthalate (PET) at ambient conditions through a cost effective and eco-friendly electro-hydrodynamic (EHD) technique. Thickness of the active layer is measured around 97 nm. The proposed ORSD is fabricated in a 3 × 3 crossbar array. It operates switching between high resistance state (HRS) and low resistance state (LRS) with OFF/ON ratio ∼14 for more than 500 endurance cycles, and retention time for more than 30 days. The switching voltage for set/reset of the devices is ±1.8 V and the bendability down to 8 mm diameter for 1000 cycles are tested. The elemental composition and surface morphology are characterized by XPS, FE-SEM, and microscope.  相似文献   
23.
《Ceramics International》2021,47(23):33280-33285
This study investigated carbon nanotube filtration technology using catalyst particles supported on silicalite-1–biomorphic carbon materials (BCMs). Aqueous solutions of Mn(II), Cu(II), Cr(III), Cd(II), and Pb(II) were used to test the efficiency of heavy metal ions removal. Carbon nanotubes (CNTs) were synthesized and grown on BCMs by the chemical vapor deposition method catalyzed with the catalyst (Co, Fe, and Ni). The synthesized CNTs with Co– and Fe– nanoparticles were typically multi-walled carbon nanotubes, and they showed good crystallinity (ID/IG = 1.05) and yield of (11.10 and 8.86) %. The removal efficiency of Mn(II), Cu(II), Cr(III), Cd(II), and Pb(II) ions using Co-catalyzed CNT filter was 97.57%, 98.01%, 97.89%, 97.42%, and 99.99%, respectively.  相似文献   
24.
Strain rate is not only an important measure to characterize the deformation property, but also an important parameter to analyze the dynamic mechanical properties of rock materials. In this paper, by using the SHPB test system improved with high temperature device, the dynamic compressive tests of sandstone at seven temperatures in the range of room temperature to 1000 °C and five impact velocities in the range of 11.0–15.0 m/s were conducted. Investigations were carried out on the influences of strain rate on dynamic compressive mechanical behaviors of sandstone. The results of the study indicate that the enhancement effects of strain rates on dynamic compressive strength, peak strain, energy absorption ratio of sandstone under high temperatures still exist. However, the increase ratios of dynamic compressive strength, peak strain, and energy absorption ratio of rock under high temperature compared to room temperature have no obvious strain rate effects. The temperatures at which the strain rates affect dynamic compressive strength and peak strain most, are 800, and 1000 °C, respectively. The temperatures at which the strain rates affect dynamic compressive strength and peak strain weakest, are 1000 °C, and room temperature, respectively. At 200 and 800 °C, the strain rate effect on energy absorption ratio are most significant, while at 1000 °C, it is weakest. There are no obvious strain rate effects on elastic modulus and increase ratio of elastic modulus under high temperatures. According to test results, the relationship formula of strain rate with high temperature and impact load was derived by internalizing fitting parameters. Compared with the strain rate effect at room temperature condition, essential differences have occurred in the strain rate effect of rock material under the influence of high temperature.  相似文献   
25.
Monomers and their polymers containing 3-arylcarbazolyl electrophores have been synthesized by the multi-step synthetic route. The materials were characterized by thermo-gravimetric analysis, differential scanning calorimetry and electron photoemission technique. The polymers represent materials of high thermal stability having initial thermal degradation temperatures in the range of 331–411 °C. The glass transition temperatures of the amorphous polymeric materials were in the rage of 148–175 °C. The electron photoemission spectra of thin layers of monomers showed ionization potentials in the range of 5.6–5.65 eV. Hole-transporting properties of the polymers were tested in the structures of organic light emitting diodes with Alq3 as the green emitter. The device containing hole-transporting layers of polyether with 3-naphthylcarbazolyl groups exhibited the best overall performance with a maximum current efficiency of 3.3 cd/A and maximum brightness of about 1000 cd/m2.  相似文献   
26.
Here, LiY(WO4)2 nanotubes are prepared via a feasible electrospinning technique. This new anode material shows excellent electrochemical properties. The capacity loss of LiY(WO4)2 nanotubes is as low as 6.9% after 156 cycles, while bulk LiY(WO4)2 presents the capacity loss higher than 55.0%. Even after 600 long-life cycles, the capacity loss of the nanotubes is only 9%. It can be seen that the hollow structure with a rough surface and a porous morphology contributes to the improvement of electrochemical performance. Furthermore, online X-ray diffraction (XRD) method is firstly applied to understand the lithium ions insertion/extraction mechanism of LiY(WO4)2 nanotubes. It can be concluded that it is an asymmetrical two-phase reaction. A phase transformation from LiY(WO4)2 to Li3Y(WO4)2 can be obviously seen from the in situ XRD during discharge process. While Li2Y(WO4)2 appears as an intermediate phase with a reverse charge reaction. In addition, in situ XRD also demonstrates that LiY(WO4)2 nanotubes have surprised electrochemical reversibility. All the above results indicate that LiY(WO4)2 nanotubes can be expected to be anode candidate for rechargeable lithium ion batteries (LIBs).  相似文献   
27.
Atom scattering is becoming recognized as a sensitive probe of the electron–phonon interaction parameter λ at metal and metal-overlayer surfaces. Here, the theory is developed, linking λ to the thermal attenuation of atom scattering spectra (in particular, the Debye–Waller factor), to conducting materials of different dimensions, from quasi-1D systems such as W(110):H(1 × 1) and Bi(114), to quasi-2D layered chalcogenides, and high-dimensional surfaces such as quasicrystalline 2ML-Ba(0001)/Cu(001) and d-AlNiCo(00001). Values of λ obtained using He atoms compare favorably with known values for the bulk materials. The corresponding analysis indicates in addition, the number of layers contributing to the electron–phonon interaction, which is measured in an atom surface collision.  相似文献   
28.
介绍机械制造厂燃煤锅炉的烟尘特点,分析滤料失效的原因,提出一套针对该工况的滤料解决方案。介绍针对复杂工况条件所选用的纤维种类以及复合面层原料成分配比的确定,最终选用针刺工艺加工并对该新产品的基本性能进行了测试分析。  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号