首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7676篇
  免费   630篇
  国内免费   337篇
电工技术   48篇
综合类   271篇
化学工业   773篇
金属工艺   126篇
机械仪表   154篇
建筑科学   16篇
矿业工程   6篇
能源动力   15篇
轻工业   2808篇
水利工程   2篇
石油天然气   56篇
武器工业   18篇
无线电   600篇
一般工业技术   3484篇
冶金工业   45篇
原子能技术   9篇
自动化技术   212篇
  2024年   84篇
  2023年   223篇
  2022年   271篇
  2021年   373篇
  2020年   341篇
  2019年   346篇
  2018年   329篇
  2017年   399篇
  2016年   307篇
  2015年   250篇
  2014年   411篇
  2013年   448篇
  2012年   562篇
  2011年   563篇
  2010年   376篇
  2009年   500篇
  2008年   262篇
  2007年   406篇
  2006年   392篇
  2005年   267篇
  2004年   279篇
  2003年   185篇
  2002年   181篇
  2001年   134篇
  2000年   97篇
  1999年   97篇
  1998年   79篇
  1997年   58篇
  1996年   51篇
  1995年   45篇
  1994年   52篇
  1993年   56篇
  1992年   66篇
  1991年   46篇
  1990年   39篇
  1989年   38篇
  1988年   11篇
  1987年   7篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1981年   1篇
  1980年   5篇
  1962年   1篇
  1959年   1篇
排序方式: 共有8643条查询结果,搜索用时 109 毫秒
81.
Poly (vinyl alcohol)/polylactic acid (PVA/PLA) blend film, which is environment friendly and has potential applications in food and electronic packaging fields, was fabricated by melt extrusion casting. Fourier transform infrared spectroscopy analysis confirmed the formation of the hydrogen bonding between PLA and PVA, which improved the compatibility of PLA with PVA, making PLA uniformly dispersed in PVA matrix as small spheres, even when PLA content increase to 15 wt%. In this way, the original hydrogen bond network among PVA was disturbed and the chain mobility of PVA was activated, endowing PVA/PLA blends with lower melt viscosity than bot modified PVA and PLA, and the blend films with the increased crystallinity, mechanical property, and water resistance. Compared with PVA film, the crystallinity, tensile strength and Young's modulus of the blend film with 15 wt% PLA, respectively, increased by 15.1%, 9 and 51 MPa, and the water contact angle enlarged from 23° to 60°.  相似文献   
82.
Polyethylene terephthalate (PET)/nano-hydroxyapatite (nHAp) composite granules were obtained using twin-screw extruder. Preforms were prepared by injection molding and then PET/nHAp bottles were produced by blow molding. For PET bottles with nHAp, the migration amounts of carboxylic acid (COOH), acetaldehyde (AA), diethylene glycol (DEG), and isophthalic acid (IPA); glass transition temperature (Tg); melting temperature (Tm); and the maximum crystallization temperature (Tcry) were measured. The load-carrying capacity, burst strength, stress cracking, and regional material distribution tests were carried out on the bottles. X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and ultraviolet transmittance analyses were conducted to explain the changes in mechanical, chemical, physical properties, and light transmission of bottles. It was found out that the COOH amount increased and the AA content decreased with increasing nHAp amount. On the other hand, no change was observed in the amounts of DEG and IPA. Although the mechanical properties such as load-carrying capacity and burst strength of the bottles have improved, it has been determined that the standard environmental stress crack resistance test procedure cannot be applied to such a composite. Experimental findings indicate that nHAp disrupts the chemical structure of PET and it isolates harmful chemicals such as AA by forming intermolecular bonds. Moreover, with the addition of up to 0.8% nHAp, PET bottles block the light transmission approximately 80% within 400–700 nm wave length zone. The study demonstrates that the PET/nHAp composite bottles can be used in the food industry, particularly in the packaging of milk and milk products which are vulnerable to light exposure.  相似文献   
83.
The effects of gum tragacanth obtained from two species of Astragalus Gossypinus (GT-G) and A. Parrowianus (GT-P) at two levels of 10% and 30% combined with cellulose nanofibers (CNF; 5%) on the physico-mechanical and structural properties of polyvinyl alcohol (PVA) nanocomposite film were investigated in this study. The water solubility and water vapor permeability of the films decreased with increasing the content of both gums, especially in the film containing 30% GT-P. The highest values of the tensile strength (39.3 MPa) and elongation at break (445%) belonged to the treatment containing 10% GT-P (90/10P/0). The FTIR and DSC analyses confirmed good interactions between GT and PVA in the 90/10P/0 treatment. SEM images indicated the dense structure of this film as the optimum treatment. Although the presence of CNF in the films containing GT-G improved some properties, especially the Young modulus, it impaired all the functional properties of nanocomposite GT-P film.  相似文献   
84.
This study evaluated the effectiveness and efficiency of two food-grade multifunctional epoxies chain extenders (CE) in branching PLA and improving its foamability. Both CE grades were effective in branching PLA causing increased end mixing torque, shear, elongational viscosities, molecular weight but decreased crystallinity of poly(lactic acid) (PLA) with CE content, due to chain entanglements. CE with low epoxy equivalent weight (EEW) was more efficient than the counterpart with high EEW due to its high reactivity. Neat PLA foams showed poor cell morphology with areas without nucleated cells and had a low expansion, owing to its low elongational viscosity. By contrast, there was a considerable change in the morphology of the PLA foam structure caused by its branching. Chain-extended PLA foams had uniform cell morphology with a high void fraction (up to ~85%) and expansion ratio (an eightfold expansion over unfoamed PLA) due to their high elongational viscosities, suggesting that melt properties of branched PLA were appropriate for optimum cell growth and stabilization during foaming. Overall, CE with low EEW was the most effective grade and 0.25% the optimum content that provided appropriate melt viscosity to produce PLA foams with a homogeneous structure, fine cells, high void fraction, high volume expansion ratio, and cell-population density.  相似文献   
85.
Sip/1 199, Sip/4032 and Sip/4019 environment-friendly composites for electronic packaging applications with high volume fraction of Si particles were fabricated by squeeze-casting technology. Effects of microstructure, panicle volume fraction, panicle size, matrix alloy and heat treatment on the electrical properties of composites were discussed, and the electrical conductivity was calculated by theoretical models. It is shown that the Si/Al interfaces are clean and do not have interface reaction products. For the same matrix alloy, the electrical conductivity of composites decreases with increasing the reinforcement volume fraction. As for the same panicle content, the electrical conductivity of composites decreases with increasing the alloying element content of matrix. Panicle size has little effects on the electrical conductivity. Electrical conductivity of composites increases slightly after annealing treatment. The electrical conductivity of composites calculated by P.G model is consistent with the experimental results.  相似文献   
86.
Infiltration kinetics of pressureless infiltration in SiCp/Al composites   总被引:1,自引:0,他引:1  
The pressureless infiltration kinetics was investigated by plotting the infiltration distance as function of the infiltration time. The effects of key process parameters such as time, temperature, Mg content on the pressureless infiltration of silicon carbide particle compacts were studied and quantified. The preform with high volume fraction SiC was obtained by mixing SiC particles with bimodal size distribution, whose diameters are 5 and 50 btm, respectively. The results show that an incubation period exists before infiltration, the influence of temperature on the incubation time exceeds that of Mg content, infiltration rate increases with the increasing temperature and Mg content, infiltration rate decreases as Mg consumes. A model of macroscopical infiltration and microscopical infiltration of liquid alloy in porous SiC preform was proposed.  相似文献   
87.
研究了无压渗透法制备电子封装SiCp/Al复合材料过程中,烧结工艺对SiC预制件开孔率、抗压强度的影响,以及渗透工艺对Al液渗透形成复合材料的影响,并对所制备的复合材料热物理性能和表面涂覆进行了评价。结果表明,经1100℃分段烧结的SiC预制件开孔率、抗压强度较好;Al液浇铸温度、保温温度分别在750~850℃、800~900℃的范围时,SiC预制件的渗透效果较好;所制备的55%SiCp/Al复合材料相对密度为98.3%,热膨胀系数在(7.23~9.97)×10-6K^-1之间变化,热导率为146.5~172.3W/(m.K),复合材料表面涂覆性能可行性好。  相似文献   
88.
为了检测回流焊接之后SMT( Surface Mount Technology)封装电路板是否存在缺陷,设计并搭建了基于线结构光传感器的SMT封装电路板三维在线检测系统,通过线结构光扫描测量,获取SMT封装电路板表面三维数据。采用双传感器测量技术,有效减少数据丢失;研究了双传感器统一标定技术,可同时实现两个传感器的参数标定和坐标系统一。提出了自适应光条中心提取算法,对反射或散射影响而形成的光条图像噪声具有很好的抑制效果,能够提取准确的光条中心。实验表明系统测量精度可达到0.02 mm。系统测量得到的三维数据,可以为在线检测SMT封装电路板缺陷提供可靠的三维信息。  相似文献   
89.
Recently, people have begun to realize the importance of child‐resistant (CR) medicine packaging. However, most manufacturers and designers have not been able to effectively provide prevention strategies or design criteria to protect consumers. This research proposes a systematic approach to analyze CR packaging design problems and experiments to evaluate the identified design parameters and to generate the most suitable CR medicine packaging design. The design of a CR packaging bottle is used as an example to help explain the development procedure. During the development procedure, user trials, questionnaires, and children's anthropometric data on bottle opening and hand operations are analyzed. Five design parameters, specifically the cap diameter, cap height, bottle height, bottle diameter, and torsion, are identified and used to perform a Taguchi orthogonal array experimental analysis. A computer‐aided design system is also built to help generate the most suitable design alternatives. The results should assist designers in determining the most important CR design parameters and their most suitable combinations for bottle and related CR medicine packaging design.  相似文献   
90.
本文在研究学习对象和学习对象元数据及参考IMS学习资源元数据标准和内容包装规范的基础上,提出了一种基于学习对象的网络学习内容组织方案,该方案利用元数据模型描述学习对象的"模式"信息,以支持对网络学习内容的访问和搜索;提出了一个学习对象包装模型对网络学习内容进行组织和包装,以支持对网络学习内容的重用和交换。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号