首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27502篇
  免费   2263篇
  国内免费   1268篇
电工技术   855篇
综合类   872篇
化学工业   9999篇
金属工艺   2033篇
机械仪表   321篇
建筑科学   327篇
矿业工程   730篇
能源动力   3688篇
轻工业   678篇
水利工程   33篇
石油天然气   717篇
武器工业   36篇
无线电   2307篇
一般工业技术   5801篇
冶金工业   1894篇
原子能技术   334篇
自动化技术   408篇
  2024年   63篇
  2023年   615篇
  2022年   778篇
  2021年   1205篇
  2020年   1076篇
  2019年   1087篇
  2018年   1004篇
  2017年   1045篇
  2016年   924篇
  2015年   916篇
  2014年   1404篇
  2013年   1582篇
  2012年   1725篇
  2011年   2312篇
  2010年   1756篇
  2009年   1664篇
  2008年   1443篇
  2007年   1573篇
  2006年   1344篇
  2005年   1091篇
  2004年   950篇
  2003年   877篇
  2002年   744篇
  2001年   605篇
  2000年   613篇
  1999年   441篇
  1998年   376篇
  1997年   294篇
  1996年   275篇
  1995年   193篇
  1994年   188篇
  1993年   136篇
  1992年   157篇
  1991年   119篇
  1990年   110篇
  1989年   87篇
  1988年   52篇
  1987年   32篇
  1986年   15篇
  1985年   32篇
  1984年   24篇
  1983年   16篇
  1982年   25篇
  1981年   17篇
  1980年   12篇
  1979年   9篇
  1978年   4篇
  1977年   4篇
  1959年   5篇
  1951年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
62.
Class I hydrophobin Vmh2, a peculiar surface active and versatile fungal protein, is known to self‐assemble into chemically stable amphiphilic films, to be able to change wettability of surfaces, and to strongly adsorb other proteins. Herein, a fast, highly homogeneous and efficient glass functionalization by spontaneous self‐assembling of Vmh2 at liquid–solid interfaces is achieved (in 2 min). The Vmh2‐coated glass slides are proven to immobilize not only proteins but also nanomaterials such as graphene oxide (GO) and quantum dots (QDs). As models, bovine serum albumin labeled with Alexa 555 fluorophore, anti‐immunoglobulin G antibodies, and cadmium telluride QDs are patterned in a microarray fashion in order to demonstrate functionality, reproducibility, and versatility of the proposed substrate. Additionally, a GO layer is effectively and homogeneously self‐assembled onto the studied functionalized surface. This approach offers a quick and simple alternative to immobilize nanomaterials and proteins, which is appealing for new bioanalytical and nanobioenabled applications.  相似文献   
63.
Magnesium (Mg)-based nanocomposites owing to their low density and biocompatibility are being targeted for transportation and biomedical sectors. In order to support a sustainable environment, the prime aim of this study was to develop non-toxic magnesium-based nanocomposites for a wide spectrum of applications. To support this objective, cerium oxide nanoparticles (0.5?vol%, 1?vol%, and 1.5?vol%) reinforced Mg composites are developed in this study using blend-press-sinter powder metallurgy technique. The microstructural studies exhibited limited amounts of porosity in Mg and Mg-CeO2 samples (< 1%). Increasing presence of CeO2 nanoparticles (up to 1.5?vol%) led to a progressive increase in microhardness, dimensional stability, damping capacity and ignition resistance of magnesium. The compressive strengths increased with the increasing addition of the nanoparticles with a significant enhancement in the fracture strain (up to ~48%). Superior energy absorption was observed for all the composite samples prior to compressive fracture. Further, enhancement in thermal, mechanical and damping characteristics of pure Mg is correlated with microstructural changes due to the presence of the CeO2 nanoparticles.  相似文献   
64.
Abstract

Graphene oxide (GO) was functionalized by polyether amine (PEA) via two methods which were one-pot modification in acetone (GON) and two steps with the intermediate product of GOCO-Cl generated (GONS). There were more PEA successfully grafted onto GO for GONS than GON. The onset polymerization temperatures of the benzoxazine (Bz) composites decreased by the inclusion of 1?wt% of GO, GON or GONS. Thermal stability of the polybenzoxazine (PBz) composites was significantly improved indicated from the increase of weight loss temperature. T10, T20 and T50 values of the composites with GONS were higher than that of the others. Toughness of PBzs may be enhanced by the incorporation of nanofillers, and GONS had stronger interfacial interaction with PBz matrix than GON.  相似文献   
65.
We propose the question of the modulated structures of copper oxide is caused by the [CuO2] in-plane oxygen vacancy or apical oxygen vacancy. Sr2CuO3+δ single-crystal samples were prepared using high-temperature and high-pressure methods. The major phase of Sr2CuO3+δ (δ = 0.4) single-crystal system is found to be constituted by the 5 a modulated structure with the Fmmm space group, which originates from the [CuO2] in-plane oxygen vacancy appearing in octahedral Cu-O. Besides, the presence of the [CuO2] in-plane oxygen vacancy may obliterate the superconductivity of the system. Experimental results deduce that the oxygen vacancy may appear in the apical oxygen sites in high-temperature copper oxide superconductors.  相似文献   
66.
《Ceramics International》2020,46(8):11689-11697
In this research, vapor phase transport (VPT) was introduced as a facile, inexpensive method to produce ZnO micro/nanostructures from various Zn sources such as pure Zn and alpha brass pre-alloyed powders (Cu–20Zn and Cu–28Zn) at different processing temperatures of 930 °C–1050 °C. Simultaneous thermal analysis (STA) was carried out to investigate Zn evaporation and ZnO micro/nanostructure formation. STA results showed an exothermic peck at 711 °C and 728 °C for Cu–20Zn and Cu–28Zn, respectively, due to oxidation of the evaporated Zn element and formation of ZnO micro/nanostructures. X-ray diffraction results showed that high purity ZnO micro/nanostructures were successfully synthesized via VPT process and the crystallite size was increased from ~60 nm to ~100 nm with increasing processing temperature. Field emission scanning electron microscopy observations showed morphology (e.g. rods, column, tetrapods, and combs) and size of the synthesized micro/nanostructures were dependent on the Zn sources and processing temperature, in which average diameter of the synthesized ZnO structures was increased with increasing the processing temperature. The smallest (98 nm) and largest (603 nm) average diameters of synthesized ZnO micro/nanostructures were attained from the pure Zn and Cu–28Zn brass powders at 930 °C and 1050 °C, respectively.  相似文献   
67.
Herein, we report the use of tungsten(VI) oxide (WO3) as support for Rh0 nanoparticles. The resulting Rh0/WO3 nanoparticles are highly active and stable catalysts in H2 generation from the hydrolysis of ammonia borane (AB). We present the results of our investigation on the particle size distribution, catalytic activity and stability of Rh0/WO3 catalysts with 0.5%, 1.0%, 2.0% wt. Rh loadings in the hydrolysis reaction. The results reveal that Rh0/WO3 (0.5% wt. Rh) is very promising catalyst providing a turnover frequency of 749 min?1 in releasing 3.0 equivalent H2 per mole of AB from the hydrolysis at 25.0 °C. The high catalytic activity of Rh0/WO3 catalyst is attributed to the reducible nature of support. The report covers the results of kinetics study as well as comparative investigation of activity, recyclability, and reusability of colloidal(0) nanoparticles and Rh0/WO3 (0.5 % wt. Rh) catalyst in the hydrolysis reaction.  相似文献   
68.
In this contribution brownmillerite-based nanocomposite cathode for Single-Chamber Solid Oxide Fuel Cells is developed. These cells can be very attractive especially for small and cheap devices because of the absence of seals. The efficiency of SC-SOFCs is strictly connected to the selectivity of anode and cathode, the bottleneck for this technology. The development of a cathode inert in fuel oxidation is particularly challenging. Our strategy is to start from a catalytically un-active support (CFA = Ca2FeAl0.95Mg0.05O5) and induce the formation of iron oxide based nanoparticles, expected to activate oxygen. Symmetric (CFA + FeOx/CGO/CFA + FeOx) and complete cells (CFA + FeOx/CGO/Ni-CGO) are studied in air and methane/oxygen 2:1 mixture. The Area Specific Resistance of CFA + FeOx is less than 1/3 that of CFA. The high selectivity allows to reach an efficiency of 25%; power still needs to be increased but we demonstrated the possibility to develop selective low cost electrodes. The effect of air, methane/oxygen exposure and the heat treatments were carefully investigated.  相似文献   
69.
Formation of cobalt sulfide hollow nanocrystals through a mechanism similar to the Kirkendall Effect has been investigated in detail. It is found that performing the reaction at > 120 °C leads to fast formation of a single void inside each shell, whereas at room temperature multiple voids are formed within each shell, which can be attributed to strongly temperature‐dependent diffusivities for vacancies. The void formation process is dominated by outward diffusion of cobalt cations; still, the occurrence of significant inward transport of sulfur anions can be inferred as the final voids are smaller in diameter than the original cobalt nanocrystals. Comparison of volume distributions for initial and final nanostructures indicates excess apparent volume in shells, implying significant porosity and/or a defective structure. Indirect evidence for fracture of shells during growth at lower temperatures was observed in shell‐size statistics and transmission electron microscopy images of as‐grown shells. An idealized model of the diffusional process imposes two minimal requirements on material parameters for shell growth to be obtainable within a specific synthetic system.  相似文献   
70.
对氧化钙固体碱催化剂用于甲醇和大豆油的酯交换反应制备生物柴油(脂肪酸甲酯)进行了研究,考察了醇油摩尔比、反应温度、催化剂用量等因素对生物柴油产率的影响,以及采用四氢呋喃等溶剂溶解产物中的甘油和脂肪酸甲酯以分离回收催化剂的方法。结果表明,在醇油摩尔比为12、反应温度为65℃、催化剂用量为8%、反应1.5h的条件下,生物柴油产率达到了95%以上。重复使用实验结果表明,CaO的催化活性比K2CO3/γ-Al2O3和KF/γ-Al2O3固体碱催化剂高,寿命更长,重复使用20次后催化效果无明显下降。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号