首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   0篇
  国内免费   1篇
电工技术   1篇
化学工业   1篇
金属工艺   2篇
机械仪表   4篇
轻工业   1篇
一般工业技术   2篇
自动化技术   69篇
  2013年   73篇
  2012年   2篇
  2007年   3篇
  2001年   1篇
  1999年   1篇
排序方式: 共有80条查询结果,搜索用时 93 毫秒
21.
《Advanced Robotics》2013,27(4):325-343
In this study, we deal with the twisting motion of a falling cat robot by means of two torque inputs around her waist. The cat robot consists of two rigid columns and has two internal actuators at the joint to generate torque inputs around normal coordinates. This system is a nonholonomic system whose angular momentum is conserved. We formulate the state equation that has torque inputs to the joint by using the nonholonomic constraint and the Lagrange-d'Alembert principle. Then, we transform the system into a linear parameter varying system. In order to improve error learning of a final-state control method, we provide the initial inputs in order to determine the appropriate rotation direction in the early stage of the twisting motion. Next, we introduce the method of the artificial potential function to the final-state control in order to make the maximum bending angle small. The feedforward torque inputs can be obtained by the final-state control in order to bring the system from the initial state to the final state in the desired time. In simulations, we also demonstrate that the twolink cat robot can land on her feet by using the 2-d.o.f. control system even when her waist damping coefficient varies.  相似文献   
22.
《Advanced Robotics》2013,27(11):1615-1638
Physical support of lower limbs during sit-to-stand and stand-to-sit transfers is important for an independent life of paraplegic patients. The purpose of this study is, therefore, to realize the control method of complete paraplegic patients during sit-to-stand and stand-to-sit transfers by using a 'robot suit HAL'. It is the most challenging issue because the HAL should start supporting the wearer's motions synchronizing his/her intention. Our proposed algorithm infers the intention based on a preliminary motion that is observed just before a desired motion so the patient could start the sit-to-stand or stand-to-sit transfers without any operation. When the HAL detects the intention to stand up and sit down, the HAL starts to support the wearer's weight and to control their body posture for stability during their transfer. The proposed algorithms embedded in the HAL were applied to a complete spinal cord injury patient in a clinical trial to confirm the effectiveness. The experimental results indicate that the proposed algorithms could support his sit-to-stand and stand-to-sit transfers safely and conveniently by keeping his stability and by reflecting his intentions. Consequently, we confirmed that the proposed method successfully supported the sit-to-stand and stand-to-sit transfers of the complete paraplegic patient with the HAL.  相似文献   
23.
《Advanced Robotics》2013,27(6):477-493
This paper presents a variant of probabilistic roadmap methods (PRM) that recently appeared as a promising approach to motion planning. We exploit a free-space structuring of the configuration space into visibility domains in order to produce small roadmaps, called visibility roadmaps. Our algorithm integrates an original termination condition related to the volume of the free space covered by the roadmap. The planner has been implemented within a software platform allowing us to address a large class of mechanical systems. Experiments show the efficiency of the approach, in particular for capturing narrow passages of collision-free configuration spaces.  相似文献   
24.
《Advanced Robotics》2013,27(5):479-499
Whether they are asked to polish or assemble parts, clean the house or open doors, the future generation of robots will have to cope with contact tasks under uncertainty in a stable and safe manner. Obtaining a controlled contact motion under uncertainty is still a major challenge for the robotics community. At present most research groups focus on one of the subcomponents (i.e., modeling, planning, estimation or control) of the system, and no overall system is developed yet. This paper presents a literature survey of the state-of-the-art of the subcomponents and points to the need for effective integration of those components.  相似文献   
25.
《Advanced Robotics》2013,27(10):1025-1038
In this paper, we present a control method to realize smooth continuous brachiation. The target brachiation is basically divided into two actions: a swing action and a locomotion action. In order to realize the continuous brachiation effectively and smoothly, it is necessary to start the swing action as soon as the robot grasps the front target bar at the end of the locomotion action. The collision, which occurs at the moment the robot grips the target bar, affects the pendulum motion of the robot. The action of bending the elbow joint of the swinging arm is proposed in order to solve this gripping problem. The elbow-bending action enables the robot to decrease the impact forces and use the excess mechanical energy after the end of the locomotion phase. Thus, there is no loss of energy and waste of time during the subsequent swing phase. Experimental results show that the robot can successfully achieve smooth, continuous brachiation.  相似文献   
26.
《Advanced Robotics》2013,27(3-4):499-513
This paper addresses the design, construction and control issues of a novel biomimetic robotic dolphin equipped with mechanical flippers, based on an engineered propulsive model. The robotic dolphin is modeled as a three-segment organism composed of a rigid anterior body, a flexible rear body and an oscillating fluke. The dorsoventral movement of the tail produces the thrust and bending of the anterior body in the horizontal plane enables turning maneuvers. A dual-microcontroller structure is adopted to drive the oscillating multi-link rear body and the mechanical flippers. Experimental results primarily confirm the effectiveness of the dolphin-like movement in propulsion and maneuvering.  相似文献   
27.
《Advanced Robotics》2013,27(4):411-431
This paper proposes a motion planning method for a mobile manipulator. In general, humans can grasp an object by various ways which depend on object posture, position and so on. The objective of this paper is to present how to detect the pose of a mobile manipulator under the condition that several ways of grasping are given to the robot. Motion errors and object position errors are considered to detect robot pose in our method because these affect the grasp motion of the robot hand. Coping with these errors, we will propose an effective pose searching method for a mobile manipulator from numerous pose candidates. The performance of the proposed method is illustrated by simulation and experiment.  相似文献   
28.
《Advanced Robotics》2013,27(8):893-911
This study proposes a new approach to virtual realization of force/tactile sensors in machines equipped with no real sensors. The key of our approach is that a machine exploits the user's biological signals. Therefore, this approach is not dependent on controlled objects and is expected to be widely applicable for a variety of machines including robots. This article describes an example robotic system comprised of an industrial robot manipulator, a motion capture system and a surface electromyogram (EMG) measurement apparatus. By monitoring/recording the user's surface EMG and postural information in real-time, we show that a robot equipped with no force/tactile sensors behaved similarly to one possessing sensors over its body. Another advantage of our approach is demonstrated by a task in which a robot and a user cooperatively hold and move a heavy load.  相似文献   
29.
《Advanced Robotics》2013,27(5):613-634
The operational space formulation provides a framework for the analysis and control of robotic systems with respect to interactions with their environments. In this paper, we discuss its implementation on a mobile manipulator programmed to polish an aircraft canopy with a curved surface of unknown geometry. The polishing task requires the robot to apply a specified normal force on the canopy surface while simultaneously performing a compliant motion keeping the surface of the grinding tool tangentially in contact with the workpiece. A human operator controls the mobile base via a joystick to guide the polishing tool to desired areas on the canopy surface, effectively increasing the mobile manipulator's reachable workspace. The results demonstrate the efficacy of compliant motion and force regulation based on the operational space formulation for robots performing tasks in unknown environments with robustness towards base motion disturbances. The mobile manipulator consists of a PUMA 560 arm mounted on top of a Nomad XR4000 mobile base. Implementation issues are discussed and experimental results are shown.  相似文献   
30.
《Advanced Robotics》2013,27(10):1115-1133
We propose a dynamic turning control system for a quadruped robot that uses non-linear oscillators. It is composed of a spontaneous locomotion controller and voluntary motion controller. We verified the mechanical capabilities of the dynamic turning motion of the proposed control system through numerical simulations and hardware experiments. Various turning speeds and orientations made the motion of the robot asymmetrical in terms of the duty ratio, stride and center of pressure. The proposed controller actively and adaptively controlled redundant degrees of freedom to cancel out dynamic asymmetry, and established stable turning motion at various locomotion speeds and turning orientations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号