首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100572篇
  免费   12949篇
  国内免费   5039篇
电工技术   8547篇
技术理论   9篇
综合类   5803篇
化学工业   16154篇
金属工艺   3337篇
机械仪表   3022篇
建筑科学   6875篇
矿业工程   2443篇
能源动力   6701篇
轻工业   11385篇
水利工程   2411篇
石油天然气   2795篇
武器工业   520篇
无线电   11532篇
一般工业技术   9107篇
冶金工业   3382篇
原子能技术   750篇
自动化技术   23787篇
  2024年   338篇
  2023年   2152篇
  2022年   3854篇
  2021年   6022篇
  2020年   4020篇
  2019年   3667篇
  2018年   3514篇
  2017年   4336篇
  2016年   5545篇
  2015年   6119篇
  2014年   8389篇
  2013年   7502篇
  2012年   7172篇
  2011年   6850篇
  2010年   5102篇
  2009年   4965篇
  2008年   4784篇
  2007年   6207篇
  2006年   5992篇
  2005年   4914篇
  2004年   3582篇
  2003年   3205篇
  2002年   2298篇
  2001年   1599篇
  2000年   1335篇
  1999年   874篇
  1998年   584篇
  1997年   463篇
  1996年   420篇
  1995年   315篇
  1994年   337篇
  1993年   233篇
  1992年   206篇
  1991年   168篇
  1990年   162篇
  1989年   140篇
  1988年   104篇
  1987年   92篇
  1986年   95篇
  1985年   123篇
  1984年   109篇
  1983年   76篇
  1982年   66篇
  1981年   54篇
  1980年   57篇
  1979年   26篇
  1966年   25篇
  1964年   35篇
  1962年   64篇
  1959年   26篇
排序方式: 共有10000条查询结果,搜索用时 156 毫秒
951.
高冉  吕成远  伦增珉 《热力发电》2021,50(1):115-122
CO2驱油-埋存一体化工程项目缺乏能够同时评价CO2的驱油和埋存效果及综合评价项目的方法。为此,本文提出了CO2驱油-埋存一体化评价方法,构建了驱油-埋存综合效应因子,引入粒子群优化(PSO)算法来优化驱油-埋存过程前、中、后期的注入速度、生产流压和阶段时长。研究结果表明:在不考虑生产成本的情况下,注采时间越长,驱油-埋存效果越好。无论是以驱油还是以埋存为主,项目初期均要维持高压低速驱替。若注重埋存效果,项目中期需要降低注入速度,项目的后期则需要重新提高注入速度;若注重驱油效果,项目中、后期需要大幅降低注入速度,同时要酌情降低生产流压,提高产油量。  相似文献   
952.
煤电在中国电力供应结构中占据主导地位,其环境影响是研究热点之一。建立中国煤电生命周期二氧化碳和大气污染物排放分析模型,基于文献调研构建参数数据库,测算中国煤电的单位发电量排放。结果表明,近年来中国煤电生命周期单位发电量的CO2、SO2、NOx和PM2.5排放分别为838.6 g/(kW·h)、0.34 g/(kW·h)、0.32 g/(kW·h)和0.08 g/(kW·h)。其中煤电单位发电量大气污染物排放,比实施超低排放改造前,下降幅度超过90%。研究发现,增大单机机组规模和进行超低排放改造能够有效降低煤电发电过程的大气污染物排放,采用煤电燃烧后碳捕集和存储(carbon capture and storage, CCS)处理技术能够使煤电CO2排放下降到144 g/(kW·h),助力碳中和目标实现。如果不采用更加严格的大气污染物排放标准和处理方式,CCS技术可能会使煤电大气污染物排放强度上升30%~40%,这与碳捕集过程使用的技术有关。  相似文献   
953.
954.
955.
Platelets play a crucial role in the physiology of primary hemostasis and pathological processes such as arterial thrombosis; thus, developing a therapeutic target that prevents platelet activation can reduce arterial thrombosis. Pterostilbene (PTE) has remarkable pharmacological activities, including anticancer and neuroprotection. Few studies have reported the effects of pterostilbene on platelet activation. Thus, we examined the inhibitory mechanisms of pterostilbene in human platelets and its role in vascular thrombosis prevention in mice. At low concentrations (2–8 μM), pterostilbene strongly inhibited collagen-induced platelet aggregation. Furthermore, pterostilbene markedly diminished Lyn, Fyn, and Syk phosphorylation and hydroxyl radical formation stimulated by collagen. Moreover, PTE directly hindered integrin αIIbβ3 activation through interfering with PAC-1 binding stimulated by collagen. In addition, pterostilbene affected integrin αIIbβ3-mediated outside-in signaling, such as integrin β3, Src, and FAK phosphorylation, and reduced the number of adherent platelets and the single platelet spreading area on immobilized fibrinogen as well as thrombin-stimulated fibrin clot retraction. Furthermore, pterostilbene substantially prolonged the occlusion time of thrombotic platelet plug formation in mice. This study demonstrated that pterostilbene exhibits a strong activity against platelet activation through the inhibition of integrin αIIbβ3-mediated inside-out and outside-in signaling, suggesting that pterostilbene can serve as a therapeutic agent for thromboembolic disorders.  相似文献   
956.
Disulfiram (DSF), an irreversible aldehyde dehydrogenase inhibitor, is being used in anticancer therapy, as its effects in humans are known and less adverse than conventional chemotherapy. We explored the potential mechanism behind the cytotoxicity of DSF-Cu+/Cu2+ complexes in oral epidermoid carcinoma meng-1 (OECM-1) and human gingival epithelial Smulow-Glickman (SG) cells. Exposure to CuCl2 or CuCl slightly but concentration-dependently decreased cell viability, while DSF-Cu+/Cu2+ induced cell death in OECM-1 cells, but not SG cells. DSF-Cu+/Cu2+ also increased the subG1 population and decreased the G1, S, and G2/M populations in OECM-1 cells, but not SG cells, and suppressed cell proliferation in both OECM-1 and SG cells. ALDH enzyme activity was inhibited by CuCl and DSF-Cu+/Cu2+ in SG cells, but not OECM-1 cells. ROS levels and cellular senescence were increased in DSF-Cu+/Cu2+-treated OECM-1 cells, whereas they were suppressed in SG cells. DSF-Cu+/Cu2+ induced mitochondrial fission in OECM-1 cells and reduced mitochondrial membrane potential. CuCl2 increased but DSF- Cu2+ impaired oxygen consumption rates and extracellular acidification rates in OECM-1 cells. CuCl2 stabilized HIF-1α expression under normoxia in OECM-1 cells, and complex with DSF enhanced that effect. Levels of c-Myc protein and its phosphorylation at Tyr58 and Ser62 were increased, while levels of the N-terminal truncated form (Myc-nick) were decreased in DSF-Cu+/Cu2-treated OECM-1 cells. These effects were all suppressed by pretreatment with the ROS scavenger NAC. Overexpression of c-Myc failed to induce HIF-1α expression. These findings provide novel insight into the potential application of DSF-CuCl2 complex as a repurposed agent for OSCC cancer therapy.  相似文献   
957.
Estrogen-related receptor α (ERRα), which is overexpressed in a variety of cancers has been considered as an effective target for anticancer therapy. ERRα inverse agonists have been proven to effectively inhibit the migration and invasion of cancer cells. As few crystalline complexes have been reported, molecular dynamics (MD) simulations were carried out in this study to deepen the understanding of the interaction mechanism between inverse agonists and ERRα. The binding free energy was analyzed by the MM-GBSA method. The results show that the total binding free energy was positively correlated with the biological activity of an inverse agonist. The interaction of the inverse agonist with the hydrophobic interlayer composed of Phe328 and Phe495 had an important impact on the biological activity of inverse agonists, which was confirmed by the decomposition of energy on residues. As Glu331 flipped and formed a hydrogen bond with Arg372 in the MD simulation process, the formation of hydrogen bond interaction with Glu331 was not a necessary condition for the compound to act as an inverse agonist. These rules provide guidance for the design of new inverse agonists.  相似文献   
958.
Chronic Kidney Disease (CKD) is associated with sustained inflammation and progressive fibrosis, changes that have been linked to altered connexin hemichannel-mediated release of adenosine triphosphate (ATP). Kidney fibrosis develops in response to increased deposition of extracellular matrix (ECM), and up-regulation of collagen I is an early marker of renal disease. With ECM remodeling known to promote a loss of epithelial stability, in the current study we used a clonal human kidney (HK2) model of proximal tubular epithelial cells to determine if collagen I modulates changes in cell function, via connexin-43 (Cx43) hemichannel ATP release. HK2 cells were cultured on collagen I and treated with the beta 1 isoform of the pro-fibrotic cytokine transforming growth factor (TGFβ1) ± the Cx43 mimetic Peptide 5 and/or an anti-integrin α2β1 neutralizing antibody. Phase microscopy and immunocytochemistry observed changes in cell morphology and cytoskeletal reorganization, whilst immunoblotting and ELISA identified changes in protein expression and secretion. Carboxyfluorescein dye uptake and biosensing measured hemichannel activity and ATP release. A Cytoselect extracellular matrix adhesion assay assessed changes in cell-substrate interactions. Collagen I and TGFβ1 synergistically evoked increased hemichannel activity and ATP release. This was paralleled by changes to markers of tubular injury, partly mediated by integrin α2β1/integrin-like kinase signaling. The co-incubation of the hemichannel blocker Peptide 5, reduced collagen I/TGFβ1 induced alterations and inhibited a positive feedforward loop between Cx43/ATP release/collagen I. This study highlights a role for collagen I in regulating connexin-mediated hemichannel activity through integrin α2β1 signaling, ahead of establishing Peptide 5 as a potential intervention.  相似文献   
959.
The integrin αIIbβ3 is the most abundant integrin on platelets. Upon platelet activation, the integrin changes its conformation (inside-out signalling) and outside-in signalling takes place leading to platelet spreading, platelet aggregation and thrombus formation. Bloodsucking parasites such as mosquitoes, leeches and ticks express anticoagulant and antiplatelet proteins, which represent major sources of lead compounds for the development of useful therapeutic agents for the treatment of haemostatic disorders or cardiovascular diseases. In addition to hematophagous parasites, snakes also possess anticoagulant and antiplatelet proteins in their salivary glands. Two snake venom proteins have been developed into two antiplatelet drugs that are currently used in the clinic. The group of proteins discussed in this review are disintegrins, low molecular weight integrin-binding cysteine-rich proteins, found in snakes, ticks, leeches, worms and horseflies. Finally, we highlight various oral antagonists, which have been tested in clinical trials but were discontinued due to an increase in mortality. No new αIIbβ3 inhibitors are developed since the approval of current platelet antagonists, and structure-function analysis of exogenous disintegrins could help find platelet antagonists with fewer adverse side effects.  相似文献   
960.
Fatty acid synthesis is essential for bacterial viability. Thus, fatty acid synthases (FASs) represent effective targets for antibiotics. Nevertheless, multidrug-resistant bacteria, including the human opportunistic bacteria, Acinetobacter baumannii, are emerging threats. Meanwhile, the FAS pathway of A. baumannii is relatively unexplored. Considering that acyl carrier protein (ACP) has an important role in the delivery of fatty acyl intermediates to other FAS enzymes, we elucidated the solution structure of A. baumannii ACP (AbACP) and, using NMR spectroscopy, investigated its interactions with β-ketoacyl ACP synthase III (AbKAS III), which initiates fatty acid elongation. The results show that AbACP comprises four helices, while Ca2+ reduces the electrostatic repulsion between acid residues, and the unconserved F47 plays a key role in thermal stability. Moreover, AbACP exhibits flexibility near the hydrophobic cavity entrance from D59 to T65, as well as in the α1α2 loop region. Further, F29 and A69 participate in slow exchanges, which may be related to shuttling of the growing acyl chain. Additionally, electrostatic interactions occur between the α2 and α3-helix of ACP and AbKAS III, while the hydrophobic interactions through the ACP α2-helix are seemingly important. Our study provides insights for development of potent antibiotics capable of inhibiting A. baumannii FAS protein–protein interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号