首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98639篇
  免费   4711篇
  国内免费   4797篇
电工技术   4390篇
技术理论   5篇
综合类   8783篇
化学工业   13753篇
金属工艺   6102篇
机械仪表   4341篇
建筑科学   4686篇
矿业工程   1576篇
能源动力   3530篇
轻工业   6055篇
水利工程   2004篇
石油天然气   4257篇
武器工业   761篇
无线电   7297篇
一般工业技术   14689篇
冶金工业   2942篇
原子能技术   2294篇
自动化技术   20682篇
  2024年   102篇
  2023年   358篇
  2022年   542篇
  2021年   821篇
  2020年   1173篇
  2019年   1116篇
  2018年   1281篇
  2017年   1283篇
  2016年   1825篇
  2015年   2579篇
  2014年   4559篇
  2013年   5426篇
  2012年   4605篇
  2011年   5558篇
  2010年   4418篇
  2009年   5899篇
  2008年   5853篇
  2007年   6258篇
  2006年   5714篇
  2005年   4806篇
  2004年   4074篇
  2003年   3992篇
  2002年   3985篇
  2001年   2935篇
  2000年   3316篇
  1999年   3106篇
  1998年   2617篇
  1997年   2472篇
  1996年   2646篇
  1995年   2726篇
  1994年   2494篇
  1993年   1517篇
  1992年   1528篇
  1991年   1053篇
  1990年   776篇
  1989年   688篇
  1988年   660篇
  1987年   379篇
  1986年   232篇
  1985年   380篇
  1984年   418篇
  1983年   437篇
  1982年   331篇
  1981年   411篇
  1980年   270篇
  1979年   118篇
  1978年   115篇
  1977年   70篇
  1975年   60篇
  1974年   40篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
The correct separation of chromosomes during mitosis is necessary to prevent genetic instability and aneuploidy, which are responsible for cancer and other diseases, and it depends on proper centrosome duplication. In a recent study, we found that Smy2 can suppress the essential role of Mps2 in the insertion of yeast centrosome into the nuclear membrane by interacting with Eap1, Scp160, and Asc1 and designated this network as SESA (S my2, E ap1, S cp160, A sc1). Detailed analysis showed that the SESA network is part of a mechanism which regulates translation of POM34 mRNA. Thus, SESA is a system that suppresses spindle pole body duplication defects by repressing the translation of POM34 mRNA. In this study, we performed a genome-wide screening in order to identify new members of the SESA network and confirmed Dhh1 as a putative member. Dhh1 is a cytoplasmic DEAD-box helicase known to regulate translation. Therefore, we hypothesized that Dhh1 is responsible for the highly selective inhibition of POM34 mRNA by SESA.  相似文献   
92.
Modern refractory castables contain between 3.5 and 5?wt.-% water that is necessary for sufficient flow during emplacement and for the formation of hydrate phases, necessary for the green strength of the material. Prior to the high temperature use of this material, it must be dried very carefully to avoid explosive spalling.This paper will demonstrate that beside conventional drying of pre-shaped materials in resistance furnaces microwave radiation is an energy saving and rapid method to remove pore water as well as hydrate bond water from the castable. In comparison to resistance furnaces, the use of microwave radiation does not affect the castable properties as there are mechanical strength (MOR, CCS), open porosity and pore size distribution. This study proved microwave radiation as valuable alternative with a series of tabular alumina based low cement castables (LLC) in which the water-to-cement-ratio (wcr = 0.64, 0.75, 0.82 and 1.13) was systematically altered by changing the cement concentration at constant mixing water concentration of 4.5%.  相似文献   
93.
This paper reports the performance of porous Gd-doped ceria (GDC) electrochemical cells with Co metal in both electrodes (cell No. 1) and with Ni metal in the cathode and Co metal in the anode (cell No. 2) for CO2 decomposition, CH4 decomposition, and the dry reforming reaction of a biogas with CO2 gas (CH4 + CO2 → 2H2 + 2CO) or with O2 gas in air (3CH4 +?1.875CO2 +?1.314O2 → 6H2 +?4.875CO +?0.7515O2). GDC cell No. 1 produced H2 gas at formation rates of 0.055 and 0.33?mL-H2/(min?m2-electrode) per 1?mL-supplied gas/(min?m2-electrode) at 600?°C and 800?°C, respectively, by the reforming of the biogas with CO2 gas. Similarly, cell No. 2 produced H2 gas at formation rates of 0.40?mL-H2/(min?m2) per 1?mL-supplied gas/(min?m2) at 800?°C from a mixture of biogas and CO2 gas. The dry reforming of a real biogas with CO2 or O2 gas at 800?°C proceeded thermodynamically over the Co or Ni metal catalyst in the cathode of the porous GDC cell. Faraday's law controlled the dry reforming rate of the biogas at 600?°C in cell No. 2. This paper also clarifies the influence of carbon deposition, which originates from CH4 pyrolysis (CH4 → C + 2H2) and disproportionation of CO gas (2CO → C + CO2), on the cell performance during dry reforming. The dry reforming of a biogas with O2 molecules from air exhibits high durability because of the oxidation of the deposited carbon by supplied air.  相似文献   
94.
The present paper deals with the experimental assessment of the effectiveness of steel fibre reinforcement in terms of punching resistance of centrically loaded flat slabs, and to the development of an analytical model capable of predicting the punching behaviour of this type of structures. For this purpose, eight slabs of 2550 × 2550 × 150 mm3 dimensions were tested up to failure, by investigating the influence of the content of steel fibres (0, 60, 75 and 90 kg/m3) and concrete strength class (50 and 70 MPa). Two reference slabs without fibre reinforcement, one for each concrete strength class, and one slab for each fibre content and each strength class compose the experimental program. All slabs were flexurally reinforced with a grid of ribbed steel bars in a percentage to assure punching failure mode for the reference slabs. Hooked ends steel fibres provided the unique shear reinforcement. The results have revealed that steel fibres are very effective in converting brittle punching failure into ductile flexural failure, by increasing both the ultimate load and deflection, as long as adequate fibre reinforcement is assured. An analytical model was developed based on the most recent concepts proposed by the fib Mode Code 2010 for predicting the punching resistance of flat slabs and for the characterization of the behaviour of fibre reinforced concrete. The most refined version of this model was capable of predicting the punching resistance of the tested slabs with excellent accuracy and coefficient of variation of about 5%.  相似文献   
95.
In this work, we report the tuning effect of the Si substitution on the magnetic and high frequency electromagnetic properties of R2Fe17 compounds and their paraffin composites. It is found that the introduction of Si can remarkably improve the magnetic and electromagnetic properties of the R2Fe17 compounds, making the R2Fe17–xSix-paraffin composites excellent microwave absorption materials (MAMs). By introducing the Si element, their saturation magnetizations decrease slightly, while much higher Curie temperatures are obtained. Furthermore, better impedance match is reached due to the decrease of the high-frequency permittivity ε′ by about 40%–50%, which finally enhances the performance of the microwave absorption. The peak frequency (fRL) of the reflection loss (RL) curve moves toward high frequency domain and the qualified bandwidth (QB, RL ≤ ?10 dB) increases remarkably. The maximum QB of 3.3 GHz (12.0–15.3 GHz) is obtained for the Sm1.5Y0.5Fe15Si2-paraffin composite (d = 1.0 mm) and the maximum RL of ?53.6 dB is achieved for Nd2Fe15Si2-paraffin composite (d = 2.2 mm), both surpassing most of the reported MAMs. Additionally, a distinguished dielectric microwave absorption peak is observed, which further increases the QB in these composites.  相似文献   
96.
The present study focuses on the sintering of silicon carbide-based ceramics (SiC) by liquid phase sintering (LPS) followed by characterization of the produced ceramics. AlN/Re2O3 mixtures were used as additives in the LPS process. In the first step, the LPS-SiC materials were produced in a graphite resistance furnace in the form of discs at different temperatures. The conditions with the best results regarding real density and relative density were taken as reference for sintering in the form of prismatic bars. In the second step, these samples were evaluated regarding fracture toughness (KIC), by the Single Edge V Notch Beam – SEVNB – method, and flexural strength. KIC behavior was evaluated according to the depth and curvature radius of the notches. Reliable KIC values were presented when the ceramic displayed a small curvature radius at the notch tip. When the radius was large, it did not maintain the square root singularity of the notch tip. Tests were carried out to determine KIC values in atmospheric air and water. KIC results were lower in water than air, with a decrease ranging between 2.56% and 11.26%. The observations indicated a direct grain size correlation between KIC values and fracture strength of the SiC ceramics.  相似文献   
97.
In this paper, debonding phenomena between carbon fiber reinforced polymer (CFRP) strips and masonry support were investigated on the basis of single-lap shear tests, considering different dimensions of the bond length. To capture the post-peak response of the CFRP–masonry joint, the slip between the support and the reinforcement strip was controlled using a clip gauge positioned at the end of the reinforcement. The tests were simulated by means of a finite element model able to capture the post-peak snap-back behavior due to the failure process. The numerical model is based on zero-thickness interface elements and on a proper non-linear cohesive law. The comparison between experimental and numerical results was performed in terms of overall response, measured by both the machine stroke and the clip gauge positioned at the free end of the reinforcement. The cases of effective bond length greater and lesser than the minimum anchorage length, suggested by the CNR Italian recommendation, were considered.  相似文献   
98.
Drop-tube processing was used to rapidly solidify droplets of Ni64.7Fe10Si25.3 and Ni59.7Fe15Si25.3 alloys. In the larger droplets, and therefore at low cooling rates, only two phases, γ-Ni31Si12 and β1-Ni3Si were observed. Conversely, in the smaller droplets, and therefore at higher cooling rates, the metastable phase Ni25Si9 was also observed. The critical cooling rate for the formation of Ni25Si9 was estimated as 5 × 103 K s−1. SEM and TEM analysis reveals three typical microstructures: (I) a regular structure, comprising single-phase γ-Ni31Si12 and a eutectic structure between γ-Ni31Si12 and β1-Ni3Si; (II) a refined lamellar structure with a lamellar spacing <50 nm comprising γ-Ni31Si12 and β1-Ni3Si; (III) an anomalous structure with a matrix of Ni25Si9 and only a very small proportion of a second, and as yet unidentified, phase. These results indicate that there is an extended stability field for Ni25Si9 in the Ni-rich part of the Ni–Fe–Si ternary system in comparison to the Ni–Si binary system. With an increase of cooling rate, an increasing fraction of small droplets experience high undercoolings and, therefore, can be undercooled into the Ni25Si9 stability field forming droplets consisting of only the anomalous structure (III). The Fe atoms are found to occupy different substitutional sites in different phase, i.e. Fe substitutes for Ni in the γ phase and Si in the L121) phase respectively.  相似文献   
99.
Single image super resolution (SISR) is an important research content in the field of computer vision and image processing. With the rapid development of deep neural networks, different image super-resolution models have emerged. Compared to some traditional SISR methods, deep learning-based methods can complete the superresolution tasks through a single image. In addition, compared with the SISR methods using traditional convolutional neural networks, SISR based on generative adversarial networks (GAN) has achieved the most advanced visual performance. In this review, we first explore the challenges faced by SISR and introduce some common datasets and evaluation metrics. Then, we review the improved network structures and loss functions of GAN-based perceptual SISR. Subsequently, the advantages and disadvantages of different networks are analyzed by multiple comparative experiments. Finally, we summarize the paper and look forward to the future development trends of GAN-based perceptual SISR.  相似文献   
100.
Static stresses analysis of carbon nano-tube reinforced composite (CNTRC) cylinder made of poly-vinylidene fluoride (PVDF) is investigated in this study. Non-axisymmetric thermo-mechanical loads are applied on cylinder in presence of uniform longitudinal magnetic field and radial electric field. The surrounded elastic medium is modeled by Pasternak foundation because of its advantages to the Winkler type. Distribution of radial, circumferential and effective stresses, temperature field and electric displacements in CNTRC cylinder are determined based on Mori–Tanaka theory. The detailed parametric study is conducted, focusing on the remarkable effects of magnetic field intensity, elastic medium, angle orientation and volume fraction of carbon nano-tubes (CNTs) on distribution of effective stress. Results demonstrated that fatigue life of CNTRC cylinder will be significantly dependent on magnetic intensity, angle orientation and volume fraction of CNTs. Results of this research can be used for optimum design of thick-walled cylinders under multi-physical fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号