首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5190篇
  免费   160篇
  国内免费   129篇
电工技术   70篇
综合类   98篇
化学工业   819篇
金属工艺   684篇
机械仪表   306篇
建筑科学   115篇
矿业工程   37篇
能源动力   317篇
轻工业   158篇
水利工程   5篇
石油天然气   20篇
武器工业   30篇
无线电   536篇
一般工业技术   1189篇
冶金工业   130篇
原子能技术   269篇
自动化技术   696篇
  2024年   3篇
  2023年   59篇
  2022年   82篇
  2021年   104篇
  2020年   80篇
  2019年   74篇
  2018年   84篇
  2017年   110篇
  2016年   110篇
  2015年   88篇
  2014年   260篇
  2013年   271篇
  2012年   299篇
  2011年   446篇
  2010年   395篇
  2009年   313篇
  2008年   367篇
  2007年   341篇
  2006年   309篇
  2005年   223篇
  2004年   251篇
  2003年   196篇
  2002年   153篇
  2001年   121篇
  2000年   100篇
  1999年   86篇
  1998年   125篇
  1997年   87篇
  1996年   67篇
  1995年   63篇
  1994年   38篇
  1993年   28篇
  1992年   30篇
  1991年   26篇
  1990年   18篇
  1989年   18篇
  1988年   13篇
  1987年   12篇
  1986年   2篇
  1985年   6篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   4篇
  1980年   3篇
  1979年   2篇
  1977年   3篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有5479条查询结果,搜索用时 62 毫秒
91.
Modified activated carbon fibers (ACFs) were used as the electrodes of an electric double-layer capacitor and showed an enhanced capacitance effect after a RF-plasma treatment. The capacitance and the surface functional groups of the ACFs were studied. For the plasma-treated ACFs having a specific surface area of 1500 m2 g−1, the capacitance increased by 28% compared to the untreated sample and the highest electric capacitance value of 142 F g−1 was achieved with an oxygen feed concentration of 10 vol.%. The Brunauer-Emmett-Teller (BET) surface area was 2103 m2 g−1, which was 34% higher than that of the untreated sample. The pore volume was similarly increased to 483.1 cm3 g−1 STP, and from the pore distribution plot, quantities of mesopores of 10 nm or less and micropores also increased. However, in order to enhance the capacitance, the quinone functional group had a significant influence in addition to the BET surface area. The correlation between the capacitance and the number of quinone functional groups was confirmed because quinone is an electron acceptor.  相似文献   
92.
Composite membranes were prepared by grafting plasma-polymerized films onto the surface of nonporous poly (dimethylsiloxane) films. Gas permeabilities of the composite membranes were measured at 35°C, 1 atm for N2, 02, CO2 and CH4. The permeation properties of the composite membrane was analyzed using the series resistance model. There was a great interfacial resistance to CH4 permeation through the composite membrane. The interfacial resistance was negligible for the other gases. The interfacial resistance seems to be a result of an interfacial layer caused by the interaction between the bulk two layers. For CH4 gas, the permeation rate through the composite membrane was affected by the direction of flow. The directional dependence was negligible for the other gases.  相似文献   
93.
V. Barranco 《Electrochimica acta》2004,49(12):1999-2013
The barrier properties of thin model organosilicon plasma polymers layers on iron are characterised by means of electrochemical impedance spectroscopy (EIS). Tailored thin plasma polymers of controlled morphology and chemical composition were deposited from a microwave discharge. By the analysis of the obtained impedance diagrams, the evolution of the water uptake ?, coating resistance and polymer capacitance with immersion time were monitored and the diffusion coefficients of the water through the films were calculated. The impedance data correlated well with the chemical structure and morphology of the plasma polymer films with a thickness of less than 100 nm. The composition of the films were determined by means of infrared reflection absorption spectroscopy (IRRAS), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The morphology of the plasma polymer surface and the interface between the plasma polymer and the metal were characterised using atomic force microscopy (AFM). It could be shown that, at higher pressure, the film roughness increases which is probably due to the adsorption of plasma polymer nanoparticles formed in the plasma bulk and the faster film growth. This leads to voids with a size of a few tens of nanometers at the polymer/metal interface. The film roughness increases from the interface to the outer surface of the film. By lowering the pressure and thereby slowing the deposition rate, the plasma polymers perfectly imitate the substrate topography and lead to an excellent blocking of the metal surface. Moreover, the ratio of siloxane bonds to methyl-silyl groups increases which implies that the crosslink density is higher at lower deposition rate. The EIS data consistently showed higher coating resistance as well as lower interfacial capacitance values and a better stability over time for the film deposited at slower pressure. The diffusion coefficient of water in thin and ultra-thin plasma polymer films could be quantified for the smooth films. The measurements show that the quantitative evaluation of the electrochemical impedance data requires a detailed understanding of the film morphology and chemical composition. In addition, the measured diffusion coefficient of about 1.5×10−14 cm2 s−1 shows that plasma polymers can act as corrosion resistant barrier layers at polymer/metal interfaces.  相似文献   
94.
Mappings between color spaces are ubiquitous in image processing problems such as gamut mapping, decolorization, and image optimization for color‐blind people. Simple color transformations often result in information loss and ambiguities, and one wishes to find an image‐specific transformation that would preserve as much as possible the structure of the original image in the target color space. In this paper, we propose Laplacian colormaps, a generic framework for structure‐preserving color transformations between images. We use the image Laplacian to capture the structural information, and show that if the color transformation between two images preserves the structure, the respective Laplacians have similar eigenvectors, or in other words, are approximately jointly diagonalizable. Employing the relation between joint diagonalizability and commutativity of matrices, we use Laplacians commutativity as a criterion of color mapping quality and minimize it w.r.t. the parameters of a color transformation to achieve optimal structure preservation. We show numerous applications of our approach, including color‐to‐gray conversion, gamut mapping, multispectral image fusion, and image optimization for color deficient viewers.  相似文献   
95.
This paper introduces a system for the direct editing of highlights produced by anisotropic BRDFs, which we call anisotropic highlights. We first provide a comprehensive analysis of the link between the direction of anisotropy and the shape of highlight curves for arbitrary object surfaces. The gained insights provide the required ingredients to infer BRDF orientations from a prescribed highlight tangent field. This amounts to a non‐linear optimization problem, which is solved at interactive framerates during manipulation. Taking inspiration from sculpting software, we provide tools that give the impression of manipulating highlight curves while actually modifying their tangents. Our solver produces desired highlight shapes for a host of lighting environments and anisotropic BRDFs.  相似文献   
96.
Multi‐view reconstruction aims at computing the geometry of a scene observed by a set of cameras. Accurate 3D reconstruction of dynamic scenes is a key component for a large variety of applications, ranging from special effects to telepresence and medical imaging. In this paper we propose a method based on Moving Least Squares surfaces which robustly and efficiently reconstructs dynamic scenes captured by a calibrated set of hybrid color+depth cameras. Our reconstruction provides spatio‐temporal consistency and seamlessly fuses color and geometric information. We illustrate our approach on a variety of real sequences and demonstrate that it favorably compares to state‐of‐the‐art methods.  相似文献   
97.
In the literature on optimal regular volume sampling, the Body‐Centered Cubic (BCC) lattice has been proven to be optimal for sampling spherically band‐limited signals above the Nyquist limit. On the other hand, if the sampling frequency is below the Nyquist limit, the Face‐Centered Cubic (FCC) lattice was demonstrated to be optimal in reducing the prealiasing effect. In this paper, we confirm that the FCC lattice is indeed optimal in this sense in a certain interval of the sampling frequency. By theoretically estimating the prealiasing error in a realistic range of the sampling frequency, we show that in other frequency intervals, the BCC lattice and even the traditional Cartesian Cubic (CC) lattice are expected to minimize the prealiasing. The BCC lattice is superior over the FCC lattice if the sampling frequency is not significantly below the Nyquist limit. Interestingly, if the original signal is drastically undersampled, the CC lattice is expected to provide the lowest prealiasing error. Additionally, we give a comprehensible clarification that the sampling efficiency of the FCC lattice is lower than that of the BCC lattice. Although this is a well‐known fact, the exact percentage has been erroneously reported in the literature. Furthermore, for the sake of an unbiased comparison, we propose to rotate the Marschner‐Lobb test signal such that an undue advantage is not given to either lattice.  相似文献   
98.
Typical high dynamic range (HDR) imaging approaches based on multiple images have difficulties in handling moving objects and camera shakes, suffering from the ghosting effect and the loss of sharpness in the output HDR image. While there exist a variety of solutions for resolving such limitations, most of the existing algorithms are susceptible to complex motions, saturation, and occlusions. In this paper, we propose an HDR imaging approach using the coded electronic shutter which can capture a scene with row‐wise varying exposures in a single image. Our approach enables a direct extension of the dynamic range of the captured image without using multiple images, by photometrically calibrating rows with different exposures. Due to the concurrent capture of multiple exposures, misalignments of moving objects are naturally avoided with significant reduction in the ghosting effect. To handle the issues with under‐/over‐exposure, noise, and blurs, we present a coherent HDR imaging process where the problems are resolved one by one at each step. Experimental results with real photographs, captured using a coded electronic shutter, demonstrate that our method produces a high quality HDR images without the ghosting and blur artifacts.  相似文献   
99.
Nano-sized silicon carbide (SiC) powder was prepared by thermal plasma process using silicon tetrachloride (SiCl4) and methane (CH4). The synthesized powder was characterized by X-ray diffraction pattern, scanning electron microscopy, transmission electron microscopy, FT-IR spectroscopy and particle size analyzer. The powder was dominated by β-SiC including some of α-SiC and free carbon species. The quality of the powder was varied with process conditions such as the molar ratio of H/Si and C/Si, and collecting positions. It was known that the conversion to SiC was mainly affected by the addition of hydrogen gas because it promoted the decomposition and reduction of SiCL. CH4 was easily decomposed to carbon species for the formation of SiC as well as removal of impure oxygen, but excessive carbon suppressed the formation of crystalline SiC and resulted in the solid carbon contamination. The optimum ratio of H/Si was approx. 26 and that of C/Si was 1.1. For collecting positions, the powder collected at the vessel and filter was preferable to that at the reaction tube. The average size of the powder synthesized was estimated to be below 100 nm and uniform in distribution.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号