首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25230篇
  免费   3411篇
  国内免费   819篇
电工技术   637篇
技术理论   1篇
综合类   1267篇
化学工业   7056篇
金属工艺   3827篇
机械仪表   759篇
建筑科学   609篇
矿业工程   1557篇
能源动力   1007篇
轻工业   1178篇
水利工程   106篇
石油天然气   385篇
武器工业   53篇
无线电   1493篇
一般工业技术   5438篇
冶金工业   3689篇
原子能技术   152篇
自动化技术   246篇
  2024年   85篇
  2023年   524篇
  2022年   626篇
  2021年   1144篇
  2020年   1101篇
  2019年   1008篇
  2018年   1038篇
  2017年   1129篇
  2016年   1287篇
  2015年   1213篇
  2014年   1710篇
  2013年   1922篇
  2012年   1793篇
  2011年   1995篇
  2010年   1404篇
  2009年   1347篇
  2008年   1155篇
  2007年   1320篇
  2006年   1256篇
  2005年   1017篇
  2004年   800篇
  2003年   700篇
  2002年   643篇
  2001年   548篇
  2000年   471篇
  1999年   364篇
  1998年   310篇
  1997年   270篇
  1996年   240篇
  1995年   220篇
  1994年   181篇
  1993年   119篇
  1992年   119篇
  1991年   74篇
  1990年   78篇
  1989年   64篇
  1988年   51篇
  1987年   23篇
  1986年   17篇
  1985年   20篇
  1984年   17篇
  1983年   5篇
  1982年   16篇
  1981年   11篇
  1980年   5篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1974年   3篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 165 毫秒
951.
Nickel hydroxide nanoparticles were fabricated on Vulcan XC-72R carbon black using various reducing agents through assisted microwave polyol process. The formed electrocatalysts using sodium borohydride [Ni(OH)2/C–NB], ethylene glycol [Ni(OH)2/C–EG] and a mixture of them [Ni(OH)2/C–EGNB] displayed an electrocatalytic activity towards urea oxidation in NaOH solution. The oxidation peak potential and current density values were greatly influenced by the employed reducing agent. Lower onset and peak potential values were measured at Ni(OH)2/C–EGNB, while Ni(OH)2/C–EG exhibited the highest oxidation current density during urea oxidation reaction. Electroactive surface area measurements revealed that the number of available active sites for the oxidation reaction was arranged in an ascending order as Ni(OH)2/C–NB < Ni(OH)2/C–EGNB < Ni(OH)2/C–EG. The diffusion coefficient of urea molecules at Ni(OH)2/C–EG and Ni(OH)2/C–EGNB was 14.69 and 5.90 times higher than that at Ni(OH)2/C–NB. Stable performance was measured at all studied electrocatalysts over prolonged operation suggesting their valuable application as efficient anode materials in direct urea oxidation fuel cells.  相似文献   
952.
953.
Graphitized carbon (GC) nanocages have been successfully prepared via a sustainable carbon powder buried-type Ni catalysis-growth technology from Tween-80 molecule precursor. The GC nanocages are used as support for the further construction of GC/Pd electrocatalyst towards ethanol oxidation reaction. The material structures and surface morphologies are studied by XRD, SEM and TEM techniques. The electrochemical properties are investigated by CV, LSV, EIS and CP techniques. The results showed that GC nanocages have good graphited structure and plentiful opening gaps, and the Pd nanoparticles were evenly distributed on the inner and outer surfaces of GC nanocages. The GC/Pd electrocatalyst exhibits excellent electrocatalytic performance towards ethanol oxidation. The positive scanning peak current density of GC/Pd electrode is up to 1612 A/g Pd in 1.0 mol/L NaOH +1.0 mol/L ethanol electrolyte, which is much higher than those (500–1100 A/g Pd) of traditional Pd electrodes supported with carbon nanotubes or graphene nanosheets.  相似文献   
954.
In this study, we report a superior dehydrogenation catalyst for dimethylamine borane, which exhibited one of the best catalytic activities. The newly formed catalyst system contains well dispersed ruthenium-copper nanomaterials on reduced graphene oxide (3.86 ± 0.47 nm), which was prepared by using the ultrasonic double reduction technique. The characterization of monodisperse ruthenium-copper alloy nanoparticles was performed using some advanced analytical methods such as TEM, HRTEM, XPS, Raman spectroscopic analysis. The experiments results revealed that the monodisperse ruthenium-copper alloy catalyst (RuCu@rGO) has one of the highest catalytic activity compared to previous studies, having a high turnover frequency value (256.70 h−1). The detailed kinetic parameters such as activation energy, enthalpy, and entropy values were also calculated for the dehydrogenation of dimethylamine borane at room temperature. Also, the results showed that the monodisperse RuCu@rGO catalyst has high durability and reusability as retained its 81% initial catalytic activity even after 4th runs for the dehydrogenation of dimethylamine borane.  相似文献   
955.
In the present research, magnetically recyclable graphene oxide (GO)/dopamine hydrochloride/AuNPs nanocatalyst are prepared by a green path with Acorus calamus seeds extract as a stabilizing and reducing agent and its catalytic efficiency was used for the reduction of methylene blue (MB) and methyl orange (MO) in the presence of NaBH4 as a reducing agent in the aqueous medium in the ambient conditions. The prepared nanocatalyst was characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM), transmission electron microscopy (TEM), Fourier transformed infrared (FT-IR) spectroscopy, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS) and UV–Vis spectroscopy. The prepared nanocatalyst has good catalytic activity and can be regain by an external magnet and recycled several times without considerable loss of its catalytic activity in the process of reduction of organic dyes.  相似文献   
956.
Hydrogen direct reduction has been proposed as a means to decarbonize primary steelmaking. Preferably, the hydrogen necessary for this process is produced via water electrolysis. A downside to electrolysis is the large electricity demand. The electricity cost of water electrolysis may be reduced by using a hydrogen storage to exploit variations in electricity price, i.e., producing more hydrogen when the electricity price is low and vice versa. In this paper we compare two kinds of hydrogen storages in the context of a hydrogen direct reduction process via simulations based on historic Swedish electricity prices: the storage of gaseous hydrogen in an underground lined rock cavern and the storage of hydrogen chemically bound in methanol. We find the methanol-based storages to be economically advantageous to lined rock caverns in several scenarios. The main advantages of methanol-based storage are the low investment cost of storage capacity and the possibility to decouple storage capacity from rate capacity. Nevertheless, no storage option is found to be profitable for historic Swedish electricity prices. For the storages to be profitable, electricity prices must be volatile with relatively frequent high peaks, which has happened rarely in Sweden in recent years. However, such scenarios may become more common with the expected increase of intermittent renewable power in the Swedish electricity system.  相似文献   
957.
This paper reports the effects of rinsing rice and cooking it in variable amounts of water on total arsenic, inorganic arsenic, iron, cadmium, manganese, folate, thiamin and niacin in the cooked grain. We prepared multiple rice varietals both rinsed and unrinsed and with varying amounts of cooking water. Rinsing rice before cooking has a minimal effect on the arsenic (As) content of the cooked grain, but washes enriched iron, folate, thiamin and niacin from polished and parboiled rice. Cooking rice in excess water efficiently reduces the amount of As in the cooked grain. Excess water cooking reduces average inorganic As by 40% from long grain polished, 60% from parboiled and 50% from brown rice. Iron, folate, niacin and thiamin are reduced by 50–70% for enriched polished and parboiled rice, but significantly less so for brown rice, which is not enriched.  相似文献   
958.
Abstract

We report controllable assembly of silver nanoparticles (Ag NPs) for patterning of silver microstructures. The assembly is induced by femtosecond laser direct writing (FsLDW). A tightly focused femtosecond laser beam is capable of trapping and driving Ag NPs to form desired micropatterns with a high resolution of ~190 nm. Taking advantage of the ‘direct writing’ feature, three microelectrodes have been integrated with a microfluidic chip; two silver-based microdevices including a microheater and a catalytic reactor have been fabricated inside a microfluidic channel for chip functionalization. The FsLDW-induced programmable assembly of Ag NPs may open up a new way to the designable patterning of silver microstructures toward flexible fabrication and integration of functional devices.  相似文献   
959.
The development of multifunctional nanoscale systems that can mediate efficient tumor targeting, together with high cellular internalization, is crucial for the diagnosis of glioma. The combination of imaging agents into one platform provides dual imaging and allows further surface modification with targeting ligands for specific glioma detection. Herein, transferrin (Tf)-decorated niosomes with integrated magnetic iron oxide nanoparticles (MIONs) and quantum dots (QDs) were formulated (PEGNIO/QDs/MIONs/Tf) for efficient imaging of glioma, supported by magnetic and active targeting. Transmission electron microscopy confirmed the complete co-encapsulation of MIONs and QDs in the niosomes. Flow cytometry analysis demonstrated enhanced cellular uptake of the niosomal formulation by glioma cells. In vitro imaging studies showed that PEGNIO/QDs/MIONs/Tf produces an obvious negative-contrast enhancement effect on glioma cells by magnetic resonance imaging (MRI) and also improved fluorescence intensity under fluorescence microscopy. This novel platform represents the first niosome-based system which combines magnetic nanoparticles and QDs, and has application potential in dual-targeted imaging of glioma.  相似文献   
960.
Optimal oxygen enrichment conditions for sponge iron rotary kiln have been successfully explored on an industrial scale using a data-driven model. A multi-objective optimisation by genetic algorithm (MOGA) is employed to find the favourable conditions. The objective function for MOGA is derived from neural networks using pre-processed operational data. From industrial experimentations guided by the optimum conditions predicted by the present model, it emerged that when the coal fines injection is maintained at 1.75?tph and the oxygen enrichment is 8 Nm3?t?1 of sponge iron, a reduction in the specific air requirement from 2609 to 2150?Nm3?t?1 was obtained, while the end-zone bed temperature remained under control at 1132°C. These conditions resulted in a reduction of specific coal consumption by 6%, an enhancement in the sponge iron production by 6% and an increase in the rotary kiln campaign life from 50 to 100 days.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号