首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47970篇
  免费   7398篇
  国内免费   3487篇
电工技术   2063篇
技术理论   1篇
综合类   4530篇
化学工业   12232篇
金属工艺   6611篇
机械仪表   2584篇
建筑科学   935篇
矿业工程   676篇
能源动力   519篇
轻工业   1156篇
水利工程   207篇
石油天然气   609篇
武器工业   470篇
无线电   3594篇
一般工业技术   11816篇
冶金工业   2260篇
原子能技术   269篇
自动化技术   8323篇
  2024年   188篇
  2023年   788篇
  2022年   1142篇
  2021年   1737篇
  2020年   1728篇
  2019年   1742篇
  2018年   1732篇
  2017年   2091篇
  2016年   2249篇
  2015年   2687篇
  2014年   2961篇
  2013年   3406篇
  2012年   3230篇
  2011年   3425篇
  2010年   2756篇
  2009年   2987篇
  2008年   2512篇
  2007年   3146篇
  2006年   2822篇
  2005年   2464篇
  2004年   2133篇
  2003年   1798篇
  2002年   1463篇
  2001年   1250篇
  2000年   1074篇
  1999年   890篇
  1998年   765篇
  1997年   605篇
  1996年   545篇
  1995年   482篇
  1994年   412篇
  1993年   301篇
  1992年   283篇
  1991年   230篇
  1990年   244篇
  1989年   183篇
  1988年   89篇
  1987年   54篇
  1986年   41篇
  1985年   32篇
  1984年   31篇
  1983年   36篇
  1982年   29篇
  1981年   17篇
  1980年   9篇
  1979年   8篇
  1978年   7篇
  1977年   7篇
  1976年   11篇
  1951年   16篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
11.
In the present work, two types of shear thickening fluids have been synthesized by using neat and aminosilane functionalized silica nanoparticles and their viscosity curves have been obtained by the rheometer. Based on the values of peak viscosity of synthesized shear thickening fluids, the surface functionalized nanosilica based shear thickening fluid has been chosen as a best candidate due to the high viscosity for impregnation into the neat Kevlar of different layers viz. four (04) and eight (08) layers for velocity impact study. The experimental investigations reveal high energy absorption of shear thickening fluid impregnated Kevlar as compared to the neat Kevlar. The maximum energy absorption 62 J is achieved corresponding to the initial velocity 154 m∙s−1 for 08 layers shear thickening fluid impregnated Kevlar specimen. The data have also been analytically determined and validated with the experimental data. The experimental data have good agreement with the analytical data within the accuracy of around 15 to 20%. The present findings can have significant inferences towards the fabrication of shear thickening fluids using nanomaterials for numerous applications such as soft armors, dampers, nanofinishing and so forth.  相似文献   
12.
To overcome the drawbacks of solid microporous materials for CO2 capture, this proof‐of‐concept study demonstrates a low‐cost and rapid method for producing composites consisting of hypercrosslinked polymers (HCP) with a polyethyleneimine (PEI) binder. The resulting materials capture CO2 through physical and chemical absorption simultaneously. Compared with HCP, the composites exhibit higher CO2 uptake, higher volumetric density, and improved tolerance to water which is attributed to the PEI binder.  相似文献   
13.
Acoustic emission (AE) during tensile testing of three-dimensional woven SiC/SiC composites was analyzed by a statistical modeling method based on a Bayesian approach to quantitatively evaluate the fracture process. Gaussian mixture models and Weibull mixture models were utilized as candidate models describing the AE time-series data. After fitting AE time-series data to these models with Markov Chain Monte Carlo (MCMC) methods, the model selection was conducted by stochastic complexity. Among the candidate models, the two-component Weibull mixture model was automatically selected. It was confirmed that the component distributions in the two-component Weibull mixture model were corresponding to the evolution of matrix cracking and fiber breakage, respectively. Since the proposed AE analysis method can determine the number of component distributions without the decision of researchers and inspectors, it is expected to be useful for an understanding of the fracture process in newly developed materials and the reliability assessment in service.  相似文献   
14.
Recently, thermal interface materials (TIMs) are in great demands for modern electronics. For mechanically mixed polymer composite TIMs, the thermal conductivity and the mechanical properties are generally lower than expected values due to the sharply increased viscosity and poor filler dispersion. This work shows that addition of a small amount of polyester-based hyperbranched polymer (HBP) avoided the trade-off in mechanically mixed ABS/hexagonal boron nitride (h-BN) composites. After adding 0.5 wt% HBP, the maximum h-BN content in the composites increased from 50 to 60 wt%. The out-of-plane, in-plane thermal conductivity, and tensile strength of ABS/h-BN with 50 wt% h-BN were 0.408, 0.517 W/mK, and 18 MPa, respectively, and were increased to 0.729, 0.847 W/mK, and 32 MPa by adding 0.5 wt% HBP, while 0.972, 1.12 W/mK, and 29.5 MPa were achieved for ABS/h-BN/HBP with 60 wt% h-BN. The morphological and rheological results proved that these enhancements are due to the improved h-BN dispersion by decreasing viscosity of composites during mixing. Theoretical modeling based on the modified effective medium theory confirmed such results and showed that the interfacial thermal resistance also decreased slightly. Thus, this work demonstrates a facile and scalable method for simultaneously improving the thermal conductivity and mechanical properties of thermoplastic-based TIMs.  相似文献   
15.
16.
17.
The main objective of the present work is to improve the performance of bonded joints in carbon fiber composite structures through introducing Multi-Walled Carbon Nanotubes (MWCNTs) into Epocast 50-A1/946 epoxy, which was primarily developed for joining and repairing of composite aircraft structures. Results from tension characterizations of structural adhesive joints (SAJs) with different scarf angles (5–45°) showed improvement up to 40% compared to neat epoxy (NE)–SAJs. Special attention was considered to investigate the performance of SAJs with 5° scarf angle under different environments. The tensile strength and stiffness of both NE-SAJs and MWCNT/E-SAJs were dramatically decreased at elevated temperature. Water absorption showed a marginal drop of about 2.0% in the tensile strength of the moist SAJs compared to the dry one. Cracks initiation and propagation were detected effectively using instrumented-SAJs with eight strain gauges. The experimental results agree well with the predicted using three-dimensional finite element analysis model.  相似文献   
18.
This paper presents the Kriging model approach for stochastic free vibration analysis of composite shallow doubly curved shells. The finite element formulation is carried out considering rotary inertia and transverse shear deformation based on Mindlin’s theory. The stochastic natural frequencies are expressed in terms of Kriging surrogate models. The influence of random variation of different input parameters on the output natural frequencies is addressed. The sampling size and computational cost is reduced by employing the present method compared to direct Monte Carlo simulation. The convergence studies and error analysis are carried out to ensure the accuracy of present approach. The stochastic mode shapes and frequency response function are also depicted for a typical laminate configuration. Statistical analysis is presented to illustrate the results using Kriging model and its performance.  相似文献   
19.
Microwave irradiation has been proven to be an effective heating source in synthetic chemistry, and can accelerate the reaction rate, provide more uniform heating and help in developing better synthetic routes for the fabrication of bone-grafting implant materials. In this study, a new technique, which comprises microwave heating and powder metallurgy for in situ synthesis of Ti/CaP composites by using Ti powders, calcium carbonate (CaCO3) powders and dicalcium phosphate dihydrate (CaHPO4·2H2O) powders, has been developed. Three different compositions of Ti:CaCO3:CaHPO4·2H2O powdered mixture were employed to investigate the effect of the starting atomic ratio of the CaCO3 to CaHPO4·2H2O on the phase, microstructural formation and compressive properties of the microwave synthesized composites. When the starting atomic ratio reaches 1.67, composites containing mainly alpha-titanium (α-Ti), hydroxyapatite (HA), beta-tricalcium phosphate (β-TCP) and calcium titanate (CaTiO3) with porosity of 26%, pore size up to 152 μm, compressive strength of 212 MPa and compressive modulus of 12 GPa were formed. The in vitro apatite-forming capability of the composite was evaluated by immersing the composite into a simulated body fluid (SBF) for up to 14 days. The results showed that biodissolution occurred, followed by apatite precipitation after immersion in the SBF, suggesting that the composites are suitable for bone implant applications as apatite is an essential intermediate layer for bone cells attachment. The quantity and size of the apatite globules increased over the immersion time. After 14 days of immersion, the composite surface was fully covered by an apatite layer with a Ca/P atomic ratio approximately of 1.68, which is similar to the bone-like apatite appearing in human hard tissue. The results suggested that the microwave assisted-in situ synthesis technique can be used as an alternative to traditional powder metallurgy for the fabrication of Ti/CaP biocomposites.  相似文献   
20.
Copper particles were incorporated and retained in elemental state in an aluminium matrix by friction stir processing thereby producing a non-equilibrium particulate composite. The processed Al–Cup composite exhibited improved strength with significantly high ductility. The composite was stable up to a temperature of more than 300°C. Thermal exposure at 350°C for more than 10 min led to diffusion of Cu atoms into the Al matrix forming a core-shell type structure in the Cu particles and thus producing an Al–Cu core-shell composite. The shell consists of multiple layers, the thickness of which was controllable.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号