首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   47862篇
  免费   4159篇
  国内免费   4638篇
电工技术   962篇
综合类   2667篇
化学工业   3778篇
金属工艺   24857篇
机械仪表   2557篇
建筑科学   914篇
矿业工程   1334篇
能源动力   975篇
轻工业   410篇
水利工程   81篇
石油天然气   607篇
武器工业   748篇
无线电   1153篇
一般工业技术   8832篇
冶金工业   5268篇
原子能技术   452篇
自动化技术   1064篇
  2024年   119篇
  2023年   799篇
  2022年   1563篇
  2021年   1772篇
  2020年   1719篇
  2019年   1271篇
  2018年   1336篇
  2017年   1697篇
  2016年   1497篇
  2015年   1577篇
  2014年   2153篇
  2013年   2460篇
  2012年   2646篇
  2011年   3488篇
  2010年   2468篇
  2009年   2805篇
  2008年   2367篇
  2007年   3208篇
  2006年   3224篇
  2005年   2587篇
  2004年   2253篇
  2003年   2047篇
  2002年   1981篇
  2001年   1856篇
  2000年   1759篇
  1999年   1090篇
  1998年   799篇
  1997年   772篇
  1996年   758篇
  1995年   557篇
  1994年   529篇
  1993年   327篇
  1992年   317篇
  1991年   225篇
  1990年   210篇
  1989年   161篇
  1988年   93篇
  1987年   37篇
  1986年   16篇
  1985年   9篇
  1984年   24篇
  1983年   10篇
  1982年   24篇
  1981年   14篇
  1980年   8篇
  1978年   10篇
  1976年   5篇
  1975年   3篇
  1959年   4篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
The uniaxial tensile test of the 5A06-O aluminium–magnesium (Al–Mg) alloy sheet was performed in the temperature range of 20–300 °C to obtain the true stress–true strain curves at different temperatures and strain rates. The constitutive model of 5A06-O Al–Mg alloy sheet with the temperature range from 150 to 300°C was established. Based on the test results, a unique finite element simulation platform for warm hydroforming of 5A06-O Al–Mg alloy was set up using the general finite element software MSC.Marc to simulate warm hydroforming of classic specimen, and a coupled thermo-mechanical finite element model for warm hydroforming of cylindrical cup was built up. Combined with the experiment, the influence of the temperature field distribution and loading conditions on the sheet formability was studied. The results show that the non-isothermal temperature distribution conditions can significantly improve the forming performance of the material. As the temperature increases, the impact of the punching speed on the forming becomes particularly obvious; the optimal values of the fluid pressure and blank holder force required for forming are reduced.  相似文献   
12.
The corrosion behaviour of Mg-6Gd-3Y-1Zn-0.3Ag (wt.%) alloy components with different sizes after cooling was investigated. The alloys in the small components (SC) cooled fast, which were composed of α-Mg matrix and coarse long-period stacking ordered (LPSO) phases. The alloys in the large components (LC) cooled slowly, and there were thin lamellar LPSO phases precipitating inside the grains, except for α-Mg matrix and coarse LPSO phases. The hydrogen evolution test revealed that the corrosion rate of LC sample was higher than that of SC sample. Electrochemical impedance spectroscopy (EIS) test showed that the surface film on LC alloys provided worse protection. The corrosion morphologies indicated that the precipitation of the thin lamellar LPSO phases in LC sample caused severe micro-galvanic corrosion, which accelerated the rupture of the surface film.  相似文献   
13.
A superhydrophobic ceria-based composite coating is developed to improve anticorrosion properties of AZ61 magnesium alloy, fabricating via chemical conversion method followed by hydrothermal treatment. The cerium conversion coating has a block structure with microcracks. After the hydrothermal treatment, a dense CeO2 layer, porous CeO2 nanorods, and stearic absorbing layers are grown stepwise on the conversion coating. And the composite coating is hydrophobic or even superhydrophobic and has almost no microcracks. As the hydrothermal reaction time increases, the water contact angle of the composite coating first increases and then decreases, and it reaches the maximum value of 152° after hydrothermal treatment for 4 h. Both the dense CeO2 layer and the superhydrophobic stearic absorbing layer can effectively prevent the electrolyte from contacting the substrate; the corrosion current density of the superhydrophobic composite coating is lower than that of the hydrophilic composite coating and the cerium conversion coating, and has the best corrosion resistance.  相似文献   
14.
The widespread demand for clean energy stimulates great interest to hydrogen energy with high energy density and conversion efficiency. Separation technologies by membranes are increasingly applied for hydrogen separation because of its excellent performance and low consumption. In this work, density functional theory simulations is used to study hydrogen separation of Pd–Au–Ag membrane, and the performance of Pd–Au alloy is also compared and discussed. The results indicate that Pd–Au alloy shows superior selectivity to H2 gas over CO, N2, CH4, CO2 and H2S gases, which is in line with experimental results. In particular, the separation selectivity of Pd–Au–Ag to H2 is significantly greater than those for Pd–Au alloy and several currently reported materials. Moreover, the permeability of H2 in Pd–Au–Ag exceeds the limits for industrial production at deferent temperatures. Our calculations demonstrate that Pd–Au–Ag alloy present excellent performance as a promising membrane for hydrogen separation.  相似文献   
15.
Aluminum alloy bipolar plates have unique application potential in proton exchange membrane fuel cell (PEMFC) due to the characteristics of lightweight and low cost. However, extreme susceptibility to corrosion in PEMFC operation condition limits the application. To promote the corrosion resistance of aluminum alloy bipolar plates, a Ni–P/TiNO coating was prepared by electroless plating and closed field unbalanced magnetron sputter ion plating (CFUMSIP) technology on the 6061 Al substrate. The research results show that Ni–P interlayer improves the deposition effect of TiNO outer layer and increase the content of TiN and TiOxNy phases. Compared to Ni–P and TiNO single-layer coatings, the Ni–P/TiNO coating samples exhibited the lowest current density value of (1.10 ± 0.02) × 10?6 A·cm?2 in simulated PEMFC cathode environment. Additionally, potential cyclic polarization measurements were carried out aiming to evaluate the durability of the aluminum alloy bipolar plate during the PEMFC start-up/shut-up process. The results illustrate that the Ni–P/TiNO coating samples exhibit excellent stability and corrosion resistance.  相似文献   
16.
To improve the safety of wet dust removal systems for processing magnesium-based alloys, a new method is proposed for preventing hydrogen generation. In this paper, hydrogen generation by Mg–Zn alloy dust was inhibited with six common metal corrosion inhibitors. The results showed that sodium dodecylbenzene sulfonate was the best hydrogen inhibitor, while CeCl3 enhanced hydrogen precipitation. The film-forming stability of sodium dodecylbenzene sulfonate was tested with different contents, temperatures, Cl? concentrations and perturbation rates. The results showed that this inhibitor formed stable protective films on the surfaces of Mg–Zn alloy particles, and adsorption followed the Langmuir adsorption model.  相似文献   
17.
《Ceramics International》2022,48(17):24346-24354
The borided layer was prepared on the surface of the Ti–5Mo–5V–8Cr–3Al alloy by powder-pack boriding at 1000°C-10h. SEM, EPMA and TEM were used to investigate the effects of alloying elements (Al, V, Mo and Cr) on the growth of TiB whiskers in the borided Ti–5Mo–5V–8Cr–3Al alloy. Wear properties of borided Ti–5Mo–5V–8Cr–3Al alloy were investigated using dry reciprocating friction tests. SEM results show that the thickness of boride layer in Ti–5Mo–5V–8Cr–3Al alloy is thinner than that in the Cp-Ti. This is attributed to the enrichment of alloying elements especially V in TiB/substrate by TEM, which hinders the diffusion of B atoms, thus resulting in the short and thick TiB whiskers in Ti–5Mo–5V–8Cr–3Al alloy. Borided Ti–5Mo–5V–8Cr–3Al alloy has the better wear resistance than as-received alloy.  相似文献   
18.
A class of ruthenium-nickel alloy catalysts featured with nanoporous nanowires (NPNWs) were synthesized by a strategy combining rapid solidification with two-step dealloying. RuNi NPNWs exhibit excellent electrocatalytic activity and stability for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in which the RuNi-2500 NPNWs catalyst shows an OER overpotential of 327 mV to deliver a current density of 10 mA cm?2 and the RuNi-0 NPNWs catalyst requires the overpotential of 69 mV at 10 mA cm?2 showing the best HER activity in alkaline media. Moreover, the RuNi-1500 NPNWs catalyst was used as the bifunctional electrocatalyst in a two-electrode alkaline electrolyzer for water splitting, which exhibits a low cell voltage of 1.553 V and a long-term stability of 24 h at 10 mA cm?2, demonstrating that the RuNi NPNWs catalysts can be considered as promising bifunctional alkaline electrocatalysts.  相似文献   
19.
张庆弢  毕超 《中国塑料》2022,36(6):87-91
基于CFD?DEM耦合方法,研究了颗粒在水室内的流动状态,分析了不同刀盘转速、粒子水通入量和水室出口角度对造粒过程的影响,发现提高刀盘转速、增加粒子水通入量和水室出口倾斜一定的角度都有利于水室内颗粒的排出。进一步研究了颗粒与碎屑在水室内的流动,发现在水室出口处二者的流动基本呈现出一定的分离角度。  相似文献   
20.
Mg-based hydride is a promising hydrogen storage material, but its capacity is hindered by the kinetic properties. In this study, Mg–Mg2Ni–LaHx nanocomposite is formed from the H-induced decomposition of Mg98Ni1·67La0.33 alloy. The hydrogen capacity of 7.19 wt % is reached at 325 °C under 3 MPa H2, attributed to the ultrahigh hydrogenation capacity in Stage I. The hydrogen capacity of 5.59 wt % is achieved at 175 °C under 1 MPa H2. The apparent activation energies for hydrogen absorption and desorption are calculated as 57.99 and 107.26 kJ/mol, which are owing to the modified microstructure with LaHx and Mg2Ni nanophases embedding in eutectic, and tubular nanostructure adjacent to eutectic. The LaH2.49 nanophase can catalyze H2 molecules to dissociate and H atoms to permeate due to its stronger affinity with H atoms. The interfaces of these nanophases provide preferential nucleation sites and alleviate the “blocking effect” together with tubular nanostructure by providing H atoms diffusion paths after the impingement of MgH2 colonies. Therefore, the superior hydrogenation properties are achieved because of the rapid absorption process of Stage I. The efficient synthesis of nano-catalysts and corresponding mechanisms for improving hydrogen storage properties have important reference to related researches.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号