首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5294篇
  免费   686篇
  国内免费   350篇
电工技术   800篇
综合类   463篇
化学工业   854篇
金属工艺   105篇
机械仪表   179篇
建筑科学   166篇
矿业工程   146篇
能源动力   318篇
轻工业   197篇
水利工程   25篇
石油天然气   204篇
武器工业   98篇
无线电   1707篇
一般工业技术   506篇
冶金工业   81篇
原子能技术   30篇
自动化技术   451篇
  2024年   8篇
  2023年   101篇
  2022年   141篇
  2021年   231篇
  2020年   209篇
  2019年   163篇
  2018年   163篇
  2017年   195篇
  2016年   218篇
  2015年   217篇
  2014年   383篇
  2013年   353篇
  2012年   426篇
  2011年   416篇
  2010年   362篇
  2009年   296篇
  2008年   314篇
  2007年   337篇
  2006年   315篇
  2005年   253篇
  2004年   214篇
  2003年   211篇
  2002年   180篇
  2001年   130篇
  2000年   103篇
  1999年   56篇
  1998年   57篇
  1997年   48篇
  1996年   36篇
  1995年   34篇
  1994年   32篇
  1993年   35篇
  1992年   20篇
  1991年   9篇
  1990年   16篇
  1989年   10篇
  1988年   4篇
  1987年   9篇
  1986年   4篇
  1983年   4篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1958年   1篇
  1951年   2篇
排序方式: 共有6330条查询结果,搜索用时 15 毫秒
11.
In this paper, the multi carrier energy (MCE) systems are reviewed from different point of views including mathematical models, integrated components and technologies, uncertainty management, planning objectives, environmental pollution, resilience, and robustness. The basic of MCE systems is formed by combination of cooling, heating and power (CCHP). The natural gas and electricity are the main inputs to MCE systems and the cooling, heating, and electricity are the common outputs. The regular energy converters in the MCE systems are combined heat and power (CHP), gas boiler, absorption-electrical chillers, power to gas (P2G) and fuel-cell. The generic energy storages are electrical, heating, cooling, hydrogen, carbon dioxide (CO2) and hydro systems.  相似文献   
12.
As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production.  相似文献   
13.
The hydrogen production capabilities of the membrane reactor combining V-10 mol%Fe hydrogen permeable alloy membrane with Ru/Cs2O/Pr6O11 ammonia decomposition catalyst are studied. The ammonia conversion is improved by 1.7 times compared to the Ru/Cs2O/Pr6O11 catalyst alone by removing the produced hydrogen through the V-10mol%Fe alloy membrane during the ammonia decomposition. 79% of the hydrogen atoms contained in the ammonia gas are extracted directly as high-purity hydrogen gas. Both the Ru/Cs2O/Pr6O11 catalyst and the V-10 mol% Fe alloy membrane are highly durable, and the initial performance of the hydrogen separation rate lasts for more than 3000 h. The produced hydrogen gas conforms to ISO 14687–2:2019 Grade D for fuel cell vehicles because the ammonia and nitrogen concentrations are less than 0.1 ppm and 100 ppm, respectively.  相似文献   
14.
果蔬中的外泌体样纳米颗粒(exosome-like nanoparticles,ELNs)是由果蔬细胞释放的纳米级囊泡结构,与动物的外泌体具有类似的超微结构,但其脂质、蛋白质及核酸等化学成分具有显著差异,并具有独特的生物学功能。本文综述了2013年以来数十种果蔬中ELNs的相关研究进展,对其提取方法和表征手段进行了分析,重点分析了不同植物来源的ELNs中脂质、蛋白质和核酸类化学成分的组成差异,并对ELNs的潜在生理活性和载体功能进行了探讨,可为果蔬中ELNs的相关研究提供借鉴和启示。  相似文献   
15.
The TiO2 hollow spheres were synthesized using a green, cheap, and easy process, in which carbonaceous spheres were chosen as the removable template. The prepared materials were characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDX), Atomic force microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR), and Brunauer–Emmett–Teller (BET) analysis. According to the results, the obtained mesoporous TiO2 hollow spheres demonstrated an external diameters less than 200?nm with shell thickness around 40?nm. The antibacterial activities of the TiO2 hollow spheres were evaluated against gram-positive (Bacillus subtilis and Staphylococcus aureus) and gram-negative (Escherichia coli and Pseudomonas aeruginosa). No antibacterial activity was found for TiO2 hollow spheres in the used concentrations. TiO2 hollow spheres were loaded with gentamycin as a selected antibiotic to magnify their benefits in biomedical applications. TiO2 hollow spheres exhibited good antibiotic carrier activity for the direct delivery of gentamicin, which was attributed to interaction between gentamicin and surface due to their larger specific surface area, more abundant porous structure, and their spherical morphology. The application of TiO2 hollow spheres as gentamicin carrier undoubtedly opens an avenue to use hollow sphere materials in other drug delivery applications.  相似文献   
16.
In order to obtain a pH‐sensitive delivery carrier for doxorubicin (DOX), DOX‐loaded polyurethane (PU·DOX) nanoparticles were readily prepared in water by electrostatic interactions between amphiphilic polyurethane with carboxyl pendent groups (PU‐COOH) and doxorubicin hydrochloride (DOX·HCl). The structures of the products obtained were characterized by Fourier transform infrared spectroscopy, 1H NMR spectroscopy, gel permeation chromatography, UV–visible spectroscopy, dynamic light scattering and transmission electron microscopy. The average hydrodynamic size of the PU·DOX nanoparticles was around 182 nm with negative surface charge (?1.1 mV) and a spherical or rodlike shape. PU·DOX nanoparticles had a higher drug‐loading content of 14.1 wt%. The in vitro drug release properties of PU·DOX nanoparticles were investigated at pH 4.0, 5.0 and 7.4, respectively. PU·DOX nanoparticles exhibited a good pH‐sensitive drug release property, but there was almost no release of DOX from PU·DOX nanoparticles at pH 7.4. The in vitro cellular uptake assay and the Cell Counting Kit‐8 assay demonstrated that PU·DOX nanoparticles had a higher level of cellular internalization and higher inhibitory effects on the proliferation of human breast cancer (MCF‐7) cells than pure DOX. The enhancement of the inhibition effects resulted from increasing apoptosis‐inducing effects on MCF‐7 cells, which was related to the enhancement of Bax expression and the reduction of Bcl‐2 expression confirmed by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) assay, real‐time polymerase chain reaction (PCR) assay and western blot assay. © 2018 Society of Chemical Industry  相似文献   
17.
Pumpkin seed oil (PSO) with carnauba wax and beeswax was used to develop nanostructured lipid carriers (NLC) loaded with a UV filter, Uvinul® A Plus B. The aims of the study were to optimize the concentration of PSO to develop a stable NLC formulation, determine storage stability of the NLC with and without PSO, and the synergistic effect of PSO-NLC with UV filter for photoprotective properties. The physical properties of NLC were optimized based on the mean particle size, polydispersity index, and storage stability. The optimized NLC consisted 10% lipid phase (3.5% carnauba wax, 3.5% beeswax, and 3.0% PSO) and 90% aqueous phase. After optimization, Uvinul® A Plus B was added in the optimized PSO-NLC to produce a photoprotective formulation. Uvinul® A Plus B consisted of both UVA (Diethylamino Hydroxybenzoyl Hexyl Benzoate) and UVB (Ethylhexyl Methoxycinnamate) filters. The NLC produced with PSO and Uvinul® A Plus B had mean particle size of 135 ± 2 nm and showed good physical stability under storage time. Besides that, the NLC produced also proven to have positive effect in enhancing the entrapment efficiency and drug loading, which were 82.86 ± 0.15% and 55.41 ± 0.04%, respectively, and showed sun protection factor value of 16.61 ± 3.45. The results indicated the presence of synergistic effect among the PSO-NLC with Uvinul® A Plus B.  相似文献   
18.
集成式铁基质生物膜反应器自养反硝化深度脱氮   总被引:3,自引:0,他引:3       下载免费PDF全文
胡智丰  邓时海  张超  李德生  彭帅 《化工学报》2020,71(7):3304-3312
以污水厂处理水为研究对象,采用铁基质生物载体与生物膜耦合实现高效自养反硝化脱氮。考察停留时间(HRT)对系统脱氮效能的影响,通过动力学及微生物群落结构分析,揭示耦合技术的脱氮机理。结果表明:HRT为8 h,对一级A和一级B污水厂处理水,总氮(TN)平均去除率分别为95.41%和92.55%,TN处理负荷分别为0.48 kg TN/(m3·d)和0.58 kg TN/(m3·d),硝化过程氨氮(NH4+-N)饱和常数分别为1.17 mg/L和0.72 mg/L,反硝化过程硝氮(NO3--N)饱和常数分别为0.87 mg/L和0.67 mg/L。出水水质分别达到《地表水环境质量标准》Ⅲ类、Ⅴ类水质标准。铁基质生物载体与生物膜耦合系统中微生物优势菌属为MaritimimonasRhodobacterSphaerotilus, 均为自养反硝化菌,证实了铁基质生物载体可为自养反硝化菌提供电子,实现生物自养反硝化脱氮。  相似文献   
19.
The use of binary oxygen carrier allows for the materials of enhanced activity or stability during chemical looping process. However, the lack of mechanical understanding of the origin of the improvements hindered the rational design and control of the doping process in the oxygen carrier production. Here, we synthesized a series of M0.6Fe2.4Oy (M = Ni, Cu, Co, Mn) binary spinel materials and carried out various characterization techniques to study how the dopants influenced the material phase change, the oxygen transfer as well as the chemical looping performance. The results showed the chemical looping reactivity can be related to the oxygen transformation between lattice oxygen and oxygen vacancy, which was determined by the redox properties of both dopants and iron. The metal in tetrahedral site for Cu, Mn, Ni-doped sample were relatively stable, limiting oxygen transformation ability. In comparison, Co dopant promoted the reducibility of iron in tetrahedral site as well as metals in other sites, making almost all lattice oxygen rapidly transformed to oxygen vacancy during reduction. This was the main cause for the subsequent high hydrogen production rate (average ∼0.02 mmol. g−1.s−1) and yield (∼15.9 mmol.g−1). Upon cycling, the phase separation of single oxides from Co0.6Fe2.4Oy and Mn0.6Fe2.4Oy spinels led to the decreased ability of oxygen transformation. However, the performance was extremely stable for Cu0.6Fe2.4Oy with reversible phase change between spinel and (Fe, Cu) wusitite by the Cu-Fe interaction. Based on the current results, this work points to a promising Cu-Co co-doping material with both good reactivity and stability.  相似文献   
20.
Strontium ferrite (SrFeO3-δ) is a very attractive oxygen transfer agent for chemical looping reactions and hydrogen-rich syngas generation. Dispersing SrFeO3 in a medium such as Ca0.5Mn0.5O could enhance the activity and cyclability. In this study, SrFeO3-δ-Ca0.5Mn0.5O (30 wt% SrFeO3-δ) nanocomposite with a reticulated foam structure was explored as the oxygen carrier for chemical looping reforming of methane in a solar tubular reactor. The foam nanocomposite was prepared by a hard-templating method. The performance was investigated at temperatures of 850–1000 °C and methane flowrates of 25–250 STP mL/min, and the oxidative gas was either CO2 or H2O in the oxidation step. In the reduction step of 27 successive redox cycles, the production rate of CO changed marginally and CO yield maintained at about 1.9 mmol/g, even though sintering occurred. The productivity of H2 decreased first and then tended to be stable at 3.8 mmol/g (i.e., twice the CO yield) as the cycling number increased (the average oxygen storage capacity of the material was ~1.95 mmol/g). Microscopic and X-ray diffraction investigations suggested that the element distribution pattern and crystalline phase of the foam nanocomposite remained almost unchanged after 27 redox cycles, confirming material stability. The maximum solar-to-fuel efficiency for the foam nanocomposite was 5.68%, which was 21.4% higher than that for the powder nanocomposite. To increase syngas productivity and solar-to-fuel efficiency, it is required to conduct the reforming reaction at high temperatures and methane flowrates. However, the energy upgrade factor will decrease as methane flowrate increases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号