首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   592篇
  免费   76篇
  国内免费   10篇
电工技术   1篇
综合类   27篇
化学工业   331篇
金属工艺   4篇
机械仪表   12篇
建筑科学   7篇
能源动力   2篇
轻工业   148篇
水利工程   1篇
石油天然气   10篇
无线电   18篇
一般工业技术   89篇
冶金工业   7篇
原子能技术   1篇
自动化技术   20篇
  2024年   2篇
  2023年   11篇
  2022年   27篇
  2021年   24篇
  2020年   27篇
  2019年   28篇
  2018年   23篇
  2017年   36篇
  2016年   30篇
  2015年   37篇
  2014年   57篇
  2013年   54篇
  2012年   71篇
  2011年   74篇
  2010年   35篇
  2009年   29篇
  2008年   25篇
  2007年   32篇
  2006年   16篇
  2005年   10篇
  2004年   11篇
  2003年   7篇
  2002年   8篇
  2001年   3篇
  1951年   1篇
排序方式: 共有678条查询结果,搜索用时 15 毫秒
11.
Aspects of the molecular-level basis for the function of ethylene glycol dimethacrylate and trimethylolproprane trimethacrylate crosslinked methacrylic acid copolymers molecularly imprinted with (S)-propranolol have been studied using a series of all-component and all-atom molecular dynamics studies of the corresponding prepolymerization systems. The crosslinking agents were observed to contribute to template complexation, and the results were contrasted with previously reported template-recognition behavior of the corresponding polymers. Differences in the extent to which the two crosslinkers interacted with the functional monomer were identified, and correlations were made to polymer-ligand recognition behavior and the results of nuclear magnetic resonance spectroscopic studies studies. This study demonstrates the importance of considering the functional monomer–crosslinker interaction when designing molecularly imprinted polymers, and highlights the often neglected general contribution of crosslinker to determining the nature of molecularly imprinted polymer-template selectivity.  相似文献   
12.
13.
赵灵芝  樊妮妮  赵妮  杨茜  胡颢 《应用化工》2014,(9):1723-1727
以降血糖药物格列美脲为模板分子,ɑ-甲基丙烯酸(MAA)为功能单体,乙二醇二甲基丙烯酸酯(EDMA)为交联剂,偶氮二异丁腈(AIBN)为引发剂,采用本体聚合法制备了格列美脲分子印迹聚合物(MIP),用于血浆样品前处理,建立了对加标兔血浆中格列美脲含量的固相萃取检测方法,通过高效液相色谱法测定,分子印迹固相萃取柱的回收率可达80%以上,有效地减少了基体中蛋白质等杂质对目标物检测的干扰,适用于生物样品中模板分子的富集和纯化。  相似文献   
14.
The purpose of this work was the preparation and characterization of polymeric membranes for the selective recognition of saccharides using molecular imprinting technology associated with phase inversion. A system able to bind saccharides with high selectivity is particularly important in the pharmaceutical sector, since some of these compounds are constituents of molecules which can exert serious toxic effects even at very low concentrations. Two polymeric matrices were prepared using poly(ethylene‐co‐vinyl alcohol) copolymers, with an ethylene molar content of 32% and 44%, and were imprinted with two different saccharide molecules: maltose and 2‐keto‐3‐deoxy‐d ‐manno‐octulosonate (KDO). Matrices imprinted against maltose and KDO showed an easy template extraction, high binding capability and satisfactory selectivity, particularly for the matrix with an ethylene molar content of 44%. © 2017 Society of Chemical Industry  相似文献   
15.
In this study, we report the development of adsorptive extraction materials by surface protein-imprinted polymers (MIPs) over silica gel for selective recognition/separation of human serum albumin (HSA) from urine. The HSA-imprinted polymers prepared on silica particle had at interface between the silica gel and different MIPs greatly produced enrichment for the binding of protein from the urine. The solid-phase extraction of the optimized polymer layer was prepared by copolymerization of methacrylic acid (MAA), acrylamide (AAm), and dimethylaminoethylmethacrylate (DMAEMA) and a crosslinker methylenebisacrylamide (MBA) at the mole ratio of 1:158:88 (T:M:C) and showed moderate affinity (<104 order M−1) toward target protein HSA and selectivity. Four analogues, egg white albumin (EWA), bovine serum albumin (BSA), lysozyme (Lyz), and creatinine (Cre) were selected to study the binding efficiency of MIPs in single and binary protein solutions. We studied the influence on recognition ability for HSA and found that prepolymer mixture and matrix flexibility of the optimized thin polymer layer (35 ± 10 nm) on the submicrosilica particles. The high-binding affinity (QMIP, 86.7 mg g−1) and fast kinetics (180 min) were observed for this synthesized HSA-MIP when compared with other reported HSA-MIPs in surface imprinting (5.9 and 11.3 mg g−1) and epitope surface imprinting (46.6 mg g−1) methods. We demonstrated the application in real and synthetic urine samples that the approach allowed the efficient adsorption of HSA in real urine (129.48 mg g−1) is almost double to the binding of HSA in synthetic urine (67.84 mg g−1). Apart from this, only minor interference of Cre (2.74 mg g−1) was observed, eventhough Cre is the final metabolite in urine. These adsorptive submicrosilica materials have potential in the pharmaceutical industry and clinical analysis applications. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46894.  相似文献   
16.
A novel biosensor (the synthetic receptor sensor) employing the molecular imprinted technology for the digoxin analysis is investigated. The molecularly imprinted polymer (MIP) modified electrode can specifically bind to the analyte in the sample without sample pretreatment. The digoxin analyzed by the MIP sensor was carried out in 1 mM K3Fe(CN)6 solution with the cyclic voltammetry. In the system, the K3Fe(CN)63−/Fe2(CN)64− redox couple was taking place. When the solution contains the digoxin, the MIP on the electrode will bind the digoxin. Further the redox system is interrupted and the peak current is decreased according to the digoxin concentration increasing. Digoxin is a glycosylated steroid-like drug. It is important for the heart disease treatment. However, since the digoxin toxic level is low, the drug remains in the blood sample must be monitored frequently. The device possesses many advantages, such as high specific recognition properties, good chemical and mechanical stability, simplicity and low cost of preparation, sensitive and label free determination. The reproducibility is good (CV < 5). The linear relationship between the digoxin concentration and the current is 1.28–128 nM, and a detection limit of 1.28 nM is achieved. The detection time is less than 5 min.  相似文献   
17.
A facile and effective method was proposed to prepare the molecularly imprinted fluorescence sensor with carbon quantum dots, which were modified vinyl groups by acrylic acid on the surface. The obtained fluorescence composite material was investigated by transmission electron microscope and Fourier transform infrared spectra. After the experimental conditions were optimized, a linear range of 1.0–60 μmol L−1 was obtained and the detection limit was 0.17 μmol L−1. The novel fluorescence sensor can be successfully used to detect tetracycline in real samples. This study provides a convenient strategy for selective recognition and rapid detection of tetracycline in the complex environment.  相似文献   
18.
Since the pioneering work of Wulff and Mosbach more than 30 years ago, molecular imprinting of synthetic polymers has emerged as a robust and convenient way for synthesizing polymeric receptor materials bearing specific recognition sites for target molecules. The resulting materials, molecularly imprinted polymers (MIPs), are therefore commonly referred to as ‘plastic antibodies’. They are obtained by polymerizing a scaffold around a target, or a derivate thereof, which acts as a molecular template. MIPs have been successfully applied in many areas including affinity separation, immunoassays, chemical sensing, solid-phase extraction, drug delivery, cell and tissue imaging, direct synthesis and catalysis. In terms of affinity and selectivity, MIPs are on a par with biological receptors like antibodies, and this is accompanied by a superior chemical and physical stability, compatibility with organic media, reusability, easy engineering and low cost. These advantages represent the main reasons for the wide interest raised around molecularly imprinted materials. Mainly produced by free radical polymerization (FRP) of vinyl monomers, MIPs have also taken advantage of the introduction of controlled/living radical polymerization (CRP) techniques, which have literally transformed polymer chemistry over the last decade. This review describes the advantages arising from the use of CRP in synthesizing MIPs, both in terms of sheer binding properties as well as for their remarkable potential for post-polymerization functionalization, for the synthesis of MIP nanomaterials and for the integration of MIPs into composites and hybrid materials. The benefits of using CRP are critically assessed with respect to the still largely applied FRP and guidelines are provided for choosing the most convenient technique to fit a specific targeted application of MIPs.  相似文献   
19.
A novel hierarchically imprinted cross-linked poly(acrylamide-co-ethylene glycol dimethacrylate) using a double-imprinting approach for the Cu2+ selective separation from aqueous medium was prepared. In the imprinting process, both Cu2+ ions and surfactant micelles (cetyltrimethylammonium bromide – CTAB) were employed as templates. The hierarchically imprinted organic polymer named (IIP-CTAB), single-imprinted (IIP-no CTAB) and non-imprinted (NIP-CTAB and NIP-no CTAB) polymers were characterized by SEM, FTIR, TG, elemental analysis and textural data from BET (Brunauer–Emmett–Teller) and BJH (Barrett–Joyner–Halenda). Compared to these materials, IIP-CTAB showed higher selectivity, specific surface area and adsorption capacity toward Cu2+ ions. Good selectivity for Cu2+ was obtained for the Cu2+/Cd2+, Cu2+/Zn2+ and Cu2+/Co2+ systems when IIP-CTAB was compared to the single-imprinted (IIP-no CTAB) and non double-imprinted polymer (NIP-CTAB), thereby confirming the improvement in the polymer selectivity due to double-imprinting effect. For adsorption kinetic data, the best fit was provided with the pseudo-second-order model for the four materials, thereby indicating the chemical nature of the Cu2+ adsorption process. Cu2+ adsorption under equilibrium was found to follow dual-site Langmuir–Freundlich model isotherm, thus suggesting the existence of adsorption sites with low and high binding energy on the adsorbent surface. From column experiments 600 adsorption–desorption cycles using 1.8 mol L−1 HNO3 as eluent confirmed the great recoverability of adsorbent. The synthesis approach here investigated has been found to be very attractive for the designing of organic ion imprinted polymer and can be expanded to the other polymers to improve performance of ion imprinted polymers in the field of solid phase extraction.  相似文献   
20.
In this research work, Zinc(II) and Aluminum(III)-IIP's were synthesized by optimizing the amount of methacrylic acid as monomer, divinylbenzene as cross-linker. The IIP's were functionalized with 8-hydroxy quinolone complexes of the two metal ions under thermal conditions by copolymerization with monomer and cross-linker. The IIP's and Non-IIP's were characterized using FT-IR, TGA, and SEM analysis. A quite remarkable difference in the size was observed of the polymers (Zn(II) 1.0 µm and Al(III) 0.1 µm). A stronger affinity was observed with IIP in comparison with Non-IIP at pH 3.1 and 4.5 for Zn(II) and Al(III) ions on their respective polymers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号