首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   64篇
  国内免费   3篇
综合类   89篇
化学工业   104篇
建筑科学   61篇
水利工程   13篇
无线电   1篇
一般工业技术   9篇
自动化技术   1篇
  2020年   2篇
  2019年   1篇
  2018年   5篇
  2017年   6篇
  2016年   9篇
  2015年   12篇
  2014年   9篇
  2013年   11篇
  2012年   13篇
  2011年   25篇
  2010年   25篇
  2009年   19篇
  2008年   17篇
  2007年   15篇
  2006年   18篇
  2005年   23篇
  2004年   15篇
  2003年   14篇
  2002年   13篇
  2001年   10篇
  2000年   7篇
  1999年   3篇
  1998年   1篇
  1995年   2篇
  1994年   3篇
排序方式: 共有278条查询结果,搜索用时 312 毫秒
11.
为了研究厌氧-好氧工艺处理垃圾渗滤液的脱氮性能,采用ASBR联合脉冲进水SBR(脉冲SBR)处理高氨氮实际垃圾渗滤液。ASBR的水力停留时间为2d;中间水箱调节脉冲SBR的进水C/N(3~5)和NH4+-N浓度;脉冲SBR采用3次等量进水模式,运行周期分为4个缺氧段和3个好氧段,不投加外碳源,缺氧4利用污泥内碳源进行反硝化。结果表明,串联运行时期(157d)系统获得了高效的脱氮性能。ASBR进水COD为7 338~10 445mg.L-1,去除率在83%以上;脉冲SBR进水NH4+-N浓度分4个阶段逐步提高至912.0±41.7mg.L-1,总氮(TN)去除率在90%以上,出水总氮小于40mg.L-1;系统COD和总氮去除率分别在87%和97%以上。单个缺氧4进程内的内源反硝化速率(DNR)会由快变慢,而其平均理论内源反硝化速率(TDNRm)达到了1.531mgN.h-1.gMLVSS-1。在不使用物化预处理和不投加外碳源的情况下实现了对渗滤液的深度脱氮。  相似文献   
12.
A/O工艺实现城市污水半亚硝化与生物除磷   总被引:1,自引:0,他引:1  
城市污水半亚硝化是实现其厌氧氨氧化的基础和关键步骤,但相关研究甚少,为此,利用A/O反应器处理实际城市污水,研究实现半亚硝化的可行性及其对生物除磷的影响.结果表明:A/O反应器可实现稳定的亚硝酸盐积累,积累率约为85%;通过调整水力停留时间可控制A/O反应器出水NO2--N/NH4+-N在1.0左右,满足厌氧氨氧化对进水水质的要求;温度和溶解氧质量浓度的波动会导致亚硝酸盐积累的破坏.实现半亚硝化的稳定后,A/O反应器除磷稳定性变差,可能与出水游离亚硝酸质量浓度(FNA)增加有关.  相似文献   
13.
水环境中非点源污染的研究   总被引:14,自引:0,他引:14  
对水环境中非点源污染的来源、特点、危害3方面进行了阐述.分析了非点源污染的研究方法,并回顾了非点源污染数学模型的发展.随着地理信息系统(GlS)、全球定位系统(GPS)和遥感技术(RS)的发展,3S技术已经成为非点源污染研究的重要工具.展望了非点源污染的研究前景.最后依据非点源污染产生的机理,从技术防治和管理防治两方面提出了非点源污染防治的有效措施.  相似文献   
14.
钝化清洗废水含有高浓度亚硝态氮,采用普通活性污泥难以进行生物处理。采用亚硝态氮废水富集亚硝态氮氧化菌(NOB),以富含NOB污泥的SBR装置处理模拟化学清洗钝化废水,并提出了该处理工艺的过程控制策略。结果表明:该工艺可以在300 min内完全氧化亚硝态氮浓度高达2000 mg·L-1的钝化废水,高浓度亚硝态氮没有对生物降解过程产生明显抑制;反应过程中DO浓度的变化与亚硝态氮氧化过程存在相关性,溶解氧浓度的移动斜率变化(DO-MSC)可作为亚硝态氮氧化过程控制参数;当DO-MSC0.02时,亚硝态氮氧化过程结束,此时可停止曝气。批次试验结果显示在不同曝气量(0.02~0.125 m3·h-1)和不同温度条件(15~30℃)下,DO-MSC指数均可有效指示亚硝态氮氧化终点。  相似文献   
15.
SBR法曝气量的模糊控制   总被引:5,自引:0,他引:5  
介绍了SBR法处理啤酒废水的过程中,将在线检测的溶解度氧浓度(DO)与人工神经网络系统相结合实现对曝气量的模糊控制的试验研究。结果表明,在同一曝气量下,反应初始阶段(8-10min)溶解氧浓度的大小不仅能够间接的反映进水有机物浓度(COD)的大小,而且可以预测整个反应过程溶解氧浓度高低,而溶解氧的高低还可以由曝气量大小控制。因此,人工神经网络系统可根据初始阶段DO的大小及变化情况预测进水有机物浓度和相应的曝气量,与此同时,以初始阶段的DO作为曝气量的模糊控制参数,实现对曝气量的模糊控制。  相似文献   
16.
在中试规模SBR(Sequencing Batch Reactor)工艺处理实际生活污水过程中,主要考察变频控制DO浓度恒定条件下温度对脱氮除磷及运行费用的影响。结果表明:温度对系统中COD和磷酸盐去除性能影响不明显,对系统中的氨氮去除影响比较显著。温度在11~26℃范围内,比氨氧化速率会随着温度的下降而降低。同时,常温条件(18~26℃)下微生物放磷和吸磷速率几乎维持恒定;低温条件下(11~18℃),放磷和吸磷速率随着温度下降大幅降低。最后,考察了不同温度条件下,SBR曝气阶段耗电量的变化规律,分析不同温度下变频控制DO浓度对SBR工艺曝气阶段耗电量的影响,为SBR污水处理厂运行提供理论依据。  相似文献   
17.
生活污水不同生物脱氮过程中N_2O产量及控制   总被引:7,自引:2,他引:5       下载免费PDF全文
巩有奎  王赛  彭永臻  王淑莹 《化工学报》2010,61(5):1286-1292
利用好氧-缺氧SBR反应器和全程曝气SBBR反应器处理生活污水,分别实现了全程、短程和同步硝化反硝化脱氮过程,研究了不同脱氮过程中N2O的产生及释放情况,同时考察了不同DO条件下同步脱氮效率及N2O产生量。结果表明,全程、短程生物脱氮过程中N2O主要产生于硝化过程,反硝化过程有利于降低系统N2O产量。全程、短程、同步硝化反硝化脱氮过程中N2O产量分别为4.67、6.48和0.35mg.L-1。硝化过程中NO2-N的积累是导致系统N2O产生的主要原因。部分AOB在限氧条件下以NH4+-N作为电子供体,NO2-N作为电子受体进行反硝化,最终产物是N2O。不同DO条件下同步硝化反硝化过程中N2O的产生表明:控制SBBR系统中DO浓度达到稳定的同步脱氮效率可使系统N2O产量最低。  相似文献   
18.
改良UCT分段进水脱氮除磷工艺性能及物料平衡   总被引:5,自引:1,他引:4       下载免费PDF全文
采用改良UCT分段进水试验装置研究了该工艺处理实际生活废水的脱氮除磷性能,建立了该系统碳(COD)、氮、磷的物料衡算公式,并以稳态条件下试验数据为基础分析评价了各指标的物料分布情况。结果表明,工艺出水水质稳定,抗冲击负荷能力较强,平均出水COD、总氮、总磷含量分别为43.5、8.51、0.29mg·mL-1,满足国家城镇生活污水一级A排放标准。此外,根据建立的物料衡算公式及工艺各反应区污染物指标的转化途径分析发现,高达67.1%的反硝化脱氮作用(包括缺氧反硝化和好氧同步硝化反硝化)是该工艺深度脱氮的根本原因;系统反硝化和释磷过程利用的COD占总去除量的62.1%,体现了该工艺充分利用原水碳源的优势;氮素和COD的平衡率均高达99.8%,证明了所建立的公式的有效性。系统对磷的去除主要依赖于排放的剩余污泥,占总量的71.7%。  相似文献   
19.
低溶解氧污泥微膨胀前后污泥硝化活性的对比研究   总被引:1,自引:0,他引:1  
为了研究低溶解氧微膨胀前后污泥硝化活性的变化,采用SBR反应器,平均DO浓度为0.6 mg/L~0.9 mg/L,测定污泥微膨胀前后污泥氧消耗速率曲线。结果表明:发生污泥微膨胀后,活性污泥对COD的去除能力有较大的提高,而对氨氮去除能力却有一定的下降。污泥微膨胀前后的氧消耗速率曲线显示,微膨胀前活性污泥总活性为67.72 mgO2/gVSS·h,其中硝化活性为43.12 mgO2/g VSS·h,占其总活性的63.67%;而微膨胀后活性污泥总活性为90.49 mgO2/gVSS·h,其中硝化活性为2  相似文献   
20.
污泥水解酸化液用作A2/O系统脱氮除磷碳源的研究   总被引:6,自引:3,他引:3  
实际生活污水多属于低C/N值水质,无法同时满足脱氮除磷对碳源的需求.为此,采用批量试验考察了剩余污泥的水解酸化产物用作脱氮除磷碳源的可行性.污泥经水解酸化后SCOD的溶出率达到80%,其中VFAs占43.2%,VFAs总量是生活污水的3倍多.以污泥的水解酸化液和生活污水作为反硝化电子供体时,最大反硝化速率分别为2.7和1.6 mgNO3--N/(gMLSS·h).将污泥酸化液用作A2/O系统的补充碳源,可提高系统的负荷,对N4+-N、TN及PO4h3--P的去除率分别为92%、77.1%和89.4%.其中,对TN和PO43--P的去除率比投加甲醇分别提高了5.2%和4.8%.投加乙酸钠、甲醇和水解酸化液时,A2/O系统好氧区的吸磷速率分别为1.2、0.7和0.9 mgPO43--P/(gMLSS·h).可见,污泥酸化液适宜用作A2/O系统的补充碳源.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号