首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5059篇
  免费   53篇
  国内免费   86篇
电工技术   41篇
综合类   55篇
化学工业   1443篇
金属工艺   163篇
机械仪表   64篇
建筑科学   99篇
矿业工程   40篇
能源动力   1908篇
轻工业   166篇
水利工程   20篇
石油天然气   51篇
武器工业   4篇
无线电   114篇
一般工业技术   535篇
冶金工业   288篇
原子能技术   55篇
自动化技术   152篇
  2024年   4篇
  2023年   237篇
  2022年   378篇
  2021年   328篇
  2020年   284篇
  2019年   258篇
  2018年   206篇
  2017年   144篇
  2016年   57篇
  2015年   50篇
  2014年   199篇
  2013年   195篇
  2012年   223篇
  2011年   400篇
  2010年   295篇
  2009年   295篇
  2008年   259篇
  2007年   256篇
  2006年   165篇
  2005年   130篇
  2004年   119篇
  2003年   102篇
  2002年   105篇
  2001年   46篇
  2000年   54篇
  1999年   68篇
  1998年   56篇
  1997年   54篇
  1996年   44篇
  1995年   42篇
  1994年   25篇
  1993年   20篇
  1992年   24篇
  1991年   17篇
  1990年   11篇
  1989年   9篇
  1988年   14篇
  1987年   6篇
  1986年   8篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1979年   1篇
  1975年   1篇
  1974年   1篇
排序方式: 共有5198条查询结果,搜索用时 392 毫秒
101.
The oxidation and reforming kinetics of methane by O2, CO2 and H2O were studied on a stepped Pt(5 5 7) single crystal from 623 to 1050 K under methane rich conditions. The rate of carbon deposition was followed by ex-situ Auger electron spectroscopy under non-oxidative conditions. The apparent activation energy for methane decomposition was significantly lower than the apparent barriers measured for both total oxidation, CO2 and H2O reforming. Total oxidation of methane to CO2 and H2O followed by combined dry and steam reforming (combined combustion-reforming) led to CO production rates which were higher than direct CO2 or H2O reforming rates. The enhanced rates are most likely due to the ability of adsorbed oxygen to prevent carbon nucleation and/or scavenge carbon enabling the reforming reaction to turnover on a larger fraction of sites. Comparable amounts of carbon were found by Auger electron spectroscopy measurements after both direct dry or steam reforming, while combined oxidation-reforming had considerable less carbon. During direct dry or steam reforming, CO2 and H2O serve only to scavenge adsorbed atomic carbon, while in the presence of oxygen, carbon is removed by both combustion and reforming routes.  相似文献   
102.
Yuhao Lu 《Electrochimica acta》2007,52(7):2562-2569
The electrochemical behavior of cobalt phthalocyanine/platinum as methanol-resistant oxygen-reduction electrocatalyst for DMFC was investigated. Platinum was chemically deposited on the carbon-supported cobalt phthalocyanine (CoPc), and then it was heat-treated in high purity nitrogen at 300 °C, 635 °C and 980 °C. In order to evaluate the electrocatalytic behavior of CoPc-Pt/C, the PtCo/C and Pt/C as reference catalysts were employed. TGA, XRD, EDAX, XPS and electrochemical experiments were used to study the thermal stability, crystal structure, physical characterization and electrochemical behavior of these catalysts. These catalysts exhibited similar electrocatalytic activity for oxygen reaction in 0.5 M H2SO4 solution. In methanol tolerance experiments, Pt/C, PtCo/C and CoPc-Pt/C heated at 980 °C were active for the methanol oxidation reaction (MOR). The presence of Co did not improve resistance to methanol poisoning. However, the CoPc-Pt/C after 300 °C or 635 °C heat-treatment demonstrated significant inactivity for MOR, hence they have a good ability to resist methanol poisoning. The current study indicated that the macrocyclic structure of phthalocyanine is the most important factor to improve the methanol tolerance of CoPc-Pt/C as the oxygen-reduction reaction (ORR) electrocatalyst. The CoPc-Pt based catalyst should be a good alternation for oxygen electro-reduction reaction in DMFC.  相似文献   
103.
Free acids of the iron substituted heteropoly acids (HPA), H7[(P2W17O61)FeIII(H2O)] (HFe1) and H18[(P2W15O56)2FeIII2(H2O)2] (HFe2) were prepared from the salts K7[(P2W17O61)FeIII(H2O)] (KFe1) and Na12[(P2W15O56)2FeIII4(H2O)2] (NaFe4), respectively. The iron-substituted HPA were adsorbed on to XC-72 carbon based GDLs to form HPA doped GDEs after water washing with HPA loadings of ca. 1 μmol. The HPA was detected throughout the GDL by EDX. Solution electrochemistry of the free acids are reported for the first time in sulfate buffer, pH 1-3. The hydrogen oxidation reaction was catalyzed by KFe1 at 0.33 V, with an exchange current density of 38 mA/cm2. Moderate activity for the oxygen reduction reaction was observed for the iron substituted HPA, which was dramatically improved by selectively removing oxygen atoms from the HPA by cycling the fuel cell cathode under N2 followed by reoxidation to give a restructured oxide catalyst. The nanostructured oxide achieved an OCV of 0.7 V with a Tafel slope of 115 mV/decade. Cycling the same catalysts in oxygen resulted in an improved catalyst/ionomer/carbon configuration with a slightly higher Tafel slope, 128 mV/decade but a respectable current density of 100 mA/cm2 at 0.2 V.  相似文献   
104.
A series of compounds La2Mo2−xWxO9 (x = 0-2) were synthesized using a freeze-dried precursor method at relatively low temperatures (673-823 K). These materials were characterised by thermogravimetric and differential thermal analysis (TG/DTA), differential scanning calorimetric (DSC), X-ray diffraction (XRD), and transmission electron microscopy (TEM) and dilatometric measurements. Oxygen stoichiometry was evaluated by coulometric titration and thermogravimetric analysis at 873-1273 K. The ionic and electronic conductivities of these materials were analysed by impedance spectroscopy and a Hebb-Wagner ion-blocking method under moderately reducing conditions. The presence of W6+ leads to an increase of the stability range (about 10−16 Pa for La2Mo0.5W1.5O9 at 1073 K) and prevents oxygen loss and amorphisation. Within the stability range, the electronic conductivity increases gradually as the temperature increases and as the oxygen partial pressure reduces. This indicates that the electronic transport is mainly n-type as a result of the oxygen-content decreasing in the molybdate lattice. Further reduction of the oxygen partial pressure gave rise to the decomposition of La2Mo2−xWxO9, leading to the formation of new phases with molybdenum in lower oxidation states, which further enhances the electronic conductivity. The results of the coulometric titration and the thermogravimetric studies under a dry 5% H2/Ar flow suggest that tungsten doped lanthanum molybdate materials can be used as electrolyte only at low temperature and under moderate reducing conditions.  相似文献   
105.
The activity, selectivity, and methanol tolerance of novel, carbon supported high-metal loading (40 wt.%) Pt/C and Pt3Me/C (Me = Ni, Co) catalysts for the O2 reduction reaction (ORR) were evaluated in model studies under defined mass transport and diffusion conditions, by rotating (ring) disk and by differential electrochemical mass spectrometry. The catalysts were synthesized by the organometallic route, via deposition of pre-formed Pt and Pt3Me pre-cursors followed by their decomposition into metal nanoparticles. Characteristic properties such as particle sizes, particle composition and phase formation, and active surface area, were determined by transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. For comparison, commercial Pt/C catalysts (20 and 40 wt.%, E-Tek, Somerset, NJ, USA) were investigated as well, allowing to evaluate Pt loading effects and, by comparison with the pre-cursor-based catalyst with their much smaller particle sizes (1.7 nm diameter), also particle size effects. Kinetic parameters for the ORR were evaluated; the ORR activities of the bimetallic catalysts and of the synthesized Pt/C catalyst were comparable and similar to that of the high-loading commercial Pt/C catalyst; at typical cathode operation potentials H2O2 formation is negligible for the synthesized catalysts. Due to their lower methanol oxidation activity the bimetallic catalysts show an improved methanol tolerance compared to the commercial Pt/C catalysts. The results indicate that the use of very small particle sizes is a possible way to achieve reasonably good ORR activities at an improved methanol tolerance at DMFC cathode relevant conditions.  相似文献   
106.
系统地回顾了从建国到90年代初,化冶所为重工业和矿物资源综合利用所做的科研工作、取得的结果和成绩的概况.其中一些研究结果已经在国内得到广泛使用,一些结果为我国新技术的开发奠定了基础.  相似文献   
107.
Ag/C catalysts with different loading were prepared using a colloidal route to obtain well dispersed catalysts on carbon, with a particle size close to 15 nm. An amount of 20 wt.% Ag on carbon was found to be the best loading in terms of current density and mass activity. The 20 wt.% Ag/C catalyst was then studied and the kinetics towards ORR was determined and compared with that of a 20 wt.% Pt/C catalyst. The number of exchanged electrons for the ORR was found to be close to four with the rotating disk electrode (RDE) as well as with the rotating ring disc electrode (RRDE) techniques. From the RDE results, the Tafel slopes b, the diffusion limiting current density inside the catalytic film (jlfilm) and the exchange current density (j0) were evaluated. The Tafel slopes b and diffusion limiting current densities inside the catalytic film (jlfilm) were found to be in the same order for both catalysts, whereas the exchange current density (j0), which is a suitable estimation of the activity of the catalyst, was at least 10 times higher at the Pt/C catalyst than at the Ag/C catalyst. The behavior of both catalysts in methanol containing electrolyte was investigated and it was found that at a low methanol concentration, the Pt/C catalyst was quasi-tolerant to methanol. But, at a high methanol concentration, the ORR at a Pt/C was affected. However, the Pt/C catalyst showed in each case better activity towards ORR than the Ag/C catalyst, even if the latter one was less affected by the presence of methanol than the former one.  相似文献   
108.
Z.D. Wei  L.L. Li  Z.T. Xia 《Electrochimica acta》2005,50(11):2279-2287
The research aims to increase the utilization of platinum (Pt) catalysts and thus to lower the catalyst loadings in the electrode for oxygen reduction reaction (ORR). The electrodeposition of Pt was performed on a rotation disk electrode (RDE) of glass carbon (GC), on which a layer of Nafion-bonded carbon of Vulcan XC 72R was dispersed in advance. The behaviors of Pt RDE and GC RDE in an aqueous solution containing HCl and H2PtCl6 were firstly studied. It was found that Pt deposition could be achieved if the electrode potential is controlled below −0.20 V versus (saturated-potassium-chloride silver chloride electrode) SSCE. However, quite a high overpotential is necessary if a quick and apparent deposition were required. Unfortunately, at a high overpotential, the hydrogen evolution would be unavoidable and even accelerated by the formation of nanometer size of Pt particles on the RDE. It was found that it is futile to increase platinum deposits just through extending the deposition time. It was also found that too large deposition current is not helpful for increase of platinum deposition because most of the current was consumed on hydrogen evolution in this case. It has been confirmed that it is conducive to richen Pt ions, present in the form of anionic complex in solution, onto the working electrode to be deposited. It is also helpful to eliminate the hydrogen bubbles formed on the working electrode, i.e., uncatalyzed carbon electrode (UCE), by imposing a positive current on the UCE for a length of time in advance of each cathodic deposition. The potential changes during deposition were recorded. Cyclic voltammograms (CV) of electrodes in 0.5 M H2SO4 before and after the deposition were used to assess loading of metal catalysts in a wide range of potential from −0.20 to 1.1 V versus SSCE. The results have shown that the performance of such an electrode with loadings estimated to be 50 μg Pt/cm2 is much better than those of a conventional electrode with loadings of 100 μg Pt/cm2.  相似文献   
109.
Transient isotopic studies in the temporal analysis of products (TAP) reactor evidenced the importance of the lifetime of oxygen species generated upon N2O decomposition on extraframework iron sites of Fe-silicalite for methane oxidation at 723 K. Fe-silicalite effectively activates CH4 when N2O and CH4 are pulsed together in the reactor. However, these oxygen species gradually become inactive for methane oxidation as the time delay between the N2O and CH4 pulses is increased from 0 to 2 s.  相似文献   
110.
A systematic investigation was conducted on the mechanism and electrocatalytic properties of O2 and Cl2 evolution on mixed oxide electrodes of nominal composition: Ti/[Ru(0.3)Ti(0.6)Ce(0.1−x)]O2[Nb2O5](x) (0 ≤ x ≤ 0.1). For the oxygen evolution, a 30 mV Tafel slope is obtained in the presence of CeO2, while in its absence a 40 mV coefficient is observed. The intrinsic electrocatalytic activity is mainly due to electronic factors, as result of the synergism between Ru and Ce oxides. For chlorine evolution, the Tafel slope (30 mV) is independent on oxide composition. The best global electrocatalytic activity for ClER was observed in the absence of Nb2O5 additive. Variation of the voltammetric charge throughout the experiments confirms high CeO2 content compositions are fragile, due mainly to the porosity caused by CeO2 presence. On the other hand, Nb2O5 addition decreases considerably this instability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号