首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   42篇
  国内免费   5篇
电工技术   67篇
综合类   7篇
化学工业   4篇
机械仪表   10篇
建筑科学   1篇
能源动力   4篇
轻工业   1篇
武器工业   7篇
无线电   4篇
一般工业技术   1篇
自动化技术   8篇
  2024年   2篇
  2023年   10篇
  2022年   3篇
  2021年   6篇
  2020年   6篇
  2019年   7篇
  2018年   7篇
  2017年   8篇
  2016年   12篇
  2015年   5篇
  2014年   5篇
  2013年   1篇
  2012年   5篇
  2011年   13篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   6篇
  2006年   1篇
  2005年   3篇
  2004年   4篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
排序方式: 共有114条查询结果,搜索用时 156 毫秒
101.
多馈入直流系统换相失败分析   总被引:2,自引:0,他引:2  
针对传统最小电压降落法在判断换相失败时准确性不高的问题,提出了新的换相失败判据。为了明确故障阻抗对换相失败的影响,分别通过两种方法:灵敏度分析法和节点阻抗矩阵法详细分析了故障阻抗与换相电压的数学关系。第一种方法能全面分析各种因素对换相电压的影响;第二种方法在一定的假设条件上得到了更为直观和简洁的换相电压表达式,可作为一种快速分析方法。基于两种换相电压分析方法,分别给出了当地换相失败和同时换相失败时的临界故障和临界耦合阻抗的求解方法。仿真分析表明,改进的换相失败判据准确度很高;同时由两种换相电压分析方法所得到的换相电压表达式也具有一定的准确性。最后,详细分析了交流故障、负荷特性以及系统参数对换相电压的影响,并得到了一些具有指导意义的普遍结论。  相似文献   
102.
多馈入直流输电系统功率稳定性分析   总被引:2,自引:1,他引:1  
直流输电系统的功率输送能力主要受所联交流系统强度的限制,单条直流系统的功率输送能力和功率稳定已有较多的研究。随着多馈入直流系统的出现,直流系统间的复杂相互作用使得多馈入直流系统的功率稳定性更为复杂。以两馈入直流系统为基础,研究多馈入直流系统运行状态变化、直流间耦合程度以及多馈入短路比大小对多馈入直流系统功率稳定性的影响。分析结果表明,在多馈入直流系统中,减小所联直流系统电流、减小直流系统间电气距离、增大所联系统多馈入短路比均能有效增大直流系统的功率稳定裕度、提高功率输送能力和最大直流功率。  相似文献   
103.
为改善送端多直流落点系统暂态稳定性,提出了一种高压直流输电(HVDC)与发电机励磁协调的非线性控制策略。通过建立送端多直流落点系统非线性微分代数方程模型,将结构保持模型下的能量函数与广义拟Hamilton理论结合,同时兼顾发电机励磁与HVDC控制的协同作用,设计出一种HVDC与发电机励磁的综合控制规律。该方法从能量的角度出发,充分考虑电力系统的强非线性特性,而且得到的控制器结构简单,易于工程实现。仿真结果表明,该控制规律能够有效提高系统阻尼,起到功率支援的作用,改善系统的暂态稳定性。  相似文献   
104.
随着直流断路器研究的不断发展,在未来使用直流断路器切除直流故障线路将成为一个可行的方案。但断路器动作后可能会引起线路潮流过载,危及整个直流系统的安全。文章利用真双极模块化多电平换流器直流输电(MMC-HVDC)系统正负极可独立控制的优点,设计了防止线路过载的紧急控制策略。首先推导出直流系统支路开断后的有功功率分布系数,找出可能发生功率越限的线路。然后保持各线路一定的功率裕度,通过功率灵敏度矩阵计算故障极换流站新的功率参考值。最后将减少的功率参考值加载到健康极对应的换流站上,并考虑健康极换流站和线路的功率约束,最大限度地保证交直流系统功率交换的稳定性,减少对交流系统的扰动。该策略能够有效避免潮流校验,提高紧急控制的速度。在PSCAD/EMTDC仿真平台中搭建七端直流模型,对所提控制策略的有效性进行了验证。  相似文献   
105.
直流线路发生短路故障时,故障电流上升速率极快且对断路器耗能支路冲击较大,对此在混合型直流断路器中引入一种缓冲支路和双向限流回路,形成一种带缓冲支路的双向限流混合型断路器,在电流正向或反向流通时均能快速清除直流线路故障,并有效抑制故障电流上升和减小故障电流对耗能支路的冲击。对断路器动作各阶段的电路进行理论分析,并在PSCAD平台搭建两端VSC-HVDC模型进行仿真验证,仿真结果表明提出的断路器能在快速清除故障的同时减小故障电流对耗能支路的冲击,有效限制故障电流的上升速率。  相似文献   
106.
针对包含柔性直流(VSC-HVDC)的交直流互联系统区间低频振荡现象,提出把基于线性矩阵不等式的多目标控制方法应用到柔性直流附加控制中。具体包括运用最小二乘旋转不变方法(TLS-ESPRIT)辨识出系统降阶模型,综合考虑控制器的鲁棒性和控制代价,设定多目标函数,设计出H2/H多目标鲁棒附加阻尼控制器,并设计传统极点配置控制器进行比较。在PSCAD/EMTDC中搭建包含柔性直流的四机两域电磁暂态模型,特征值分析和时域仿真结果表明:在系统内部参数发生较大变化情况下,多目标鲁棒阻尼控制器具有更好的阻尼特性,并兼顾了控制器的控制代价。  相似文献   
107.
为兼顾系统动态响应速度和换流站精确控制有功功率的能力,并保证系统直流电压控制具有一定刚性,本文提出将直流电压偏差控制特性曲线中定功率特性改为斜率特性,并将其作为辅助站的控制特性,而主导站采用定直流电压控制,其余换流站采用定功率和斜率混合控制。为实现该控制策略,根据各换流站的控制特性设计相应的控制器结构和参数,并在控制器中引入滞环以避免控制模式频繁切换。最后,在PSCAD/EMTDC中搭建5端柔性直流输电系统,对系统处在不同的运行状态分别进行仿真,仿真结果表明,该协调控制策略能够满足系统在不同运行状态下的运行要求。  相似文献   
108.
级联型混合直流输电系统具有能抑制换相失败、传输大容量功率的优势。但当级联型混合直流低端模块化多电平换流器(MMC)采用主从控制时,若系统发生交直流故障或负荷突增,可能会产生电流不平衡问题,导致受端交流侧功率出现大范围反向传输及电压支撑能力下降。为解决该问题并增强受端电网的稳定性,针对级联型混合直流输电系统,提出一种基于统一潮流控制器(UPFC)的柔性潮流协调控制策略。研究了基于柔性交流输电(FACTS)设备统一潮流控制器(UPFC)的级联型混合直流系统柔性潮流控制特性,针对系统故障及大扰动时出现的功率返送及电压稳定性问题,提出基于UPFC的频率支撑策略和基于动态限幅的电压支撑策略。该策略将送端侧故障带来的功率扰动转移到受端交流系统UPFC所在线路,利用UPFC功率补偿能力进行协调,同时基于动态限幅控制策略,采用无功优先控制方式提高换流站无功输出能力。最后,在PSCAD–EMTDC平台搭建了含受端交流系统的级联型混合直流输电系统模型。首先,仿真了LCC直流电流指令值下降过程,结果表明,本文所提基于UPFC的协调控制策略可以有效地减小交流系统频率波动,抑制功率返送现象;其次,仿真了系统负荷...  相似文献   
109.
模块化多电平换流器(modular multilevel converter,MMC)的设计和分析通常是在电网平衡下进行,但在实际运行中交流电网是不平衡。电网不平衡将导致MMC桥臂环流的直流分量不再相等,含有2倍频的正序、负序和零序分量,使系统损耗增加,影响系统性能。首先,本文根据MMC的数学模型和相单元的瞬时功率分析环流的产生机理,得到电网不平衡时环流各分量的等效电路。然后,提出一种电网不平衡下基于二阶广义积分器(second order generalized integrator,SOGI)的环流抑制策略,该策略将三相环流中2次谐波分量与不相等的直流分量分离后单独抑制,采用比例积分(proportional integral,PI)控制经SOGI提取桥臂环流的正序、负序2倍频分量,采用准比例谐振(proportional resonant,PR)控制环流的零序2倍频分量。最后,在PSCAD/EMTDC平台中搭建217电平的MMC系统模型,将本文所提环流抑制策略与传统环流抑制策略、采用准比例谐振器控制环流抑制策略和采用比例积分谐振(proportional integral resonant,PIR)控制环流抑制策略进行仿真实验对比。实验结果表明:在单相非金属接地故障时,与其他3种环流抑制策略作对比,本文策略能将环流的2倍频分量抑制到0.000 6 kA,将谐波畸变率降低到0.03%,表明所提策略的优越性;同时在两相非金属接地故障时,本文策略能将环流的2倍频分量抑制到0.003 9 kA,谐波畸变率降低到0.22%。仿真实验结果验证了本文方法的有效性。  相似文献   
110.
为了顺应新工科学习趋势、增强师生的互动性和培养学生的自主学习创新能力,四川大学电工电子学课程组试行了基于互联网+的雨课堂x“雷实验”方式,选取少数几组同学,用“雨课堂”和A+D Lab实验装置相结合进行电工电子学多模态实验。实验方式较为灵活多变,能更好地调动学生的积极性、培养学生的创新性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号